Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Store Checkout-Scanner Accuracy In a study of store checkout-scanners, 1234 items were checked for pricing accuracy; 20 checked items were found to be overcharges, and 1214 checked items were not overcharges (based on data from “UPC Scanner Pricing Systems: Are They Accurate?” by Goodstein, Journal of Marketing, Vol. 58). Use a 0.05 significance level to test the claim that with scanners, 1% of sales are overcharges. (Before scanners were used, the overcharge rate was estimated to be about 1%.) Based on these results, do scanners appear to help consumers avoid overcharges?

Short Answer

Expert verified

Null hypothesis: The proportion of items that are overcharged is equal to 1%.

Alternative hypothesis: The proportion of items that are overcharged is not equal to 1%.

Test statistic: 2.118

Critical value: 1.96

P-value: 0.0342

The null hypothesis is rejected.

There is enough evidence to reject the claim that the proportion of sales that are overcharged is equal to 1%.

As the sample proportion of overcharged items is greater than 1% (1.6%), the scanners detect the items that are overcharged accurately and thus, help the customers to avoid overcharges.

Step by step solution

01

Given information

In a sample of 1234 checked items, 20 checked items are overcharged. It is claimed that 1% of the items sold are overcharged.

02

Hypotheses

The null hypothesis is written as follows.

The proportion of overcharged items is equal to 1%.

H0:p=0.01

The alternative hypothesis is written as follows.

The proportion of overcharged items is not equal to 1%.

H1:p0.01

The test is two-tailed.

03

Sample size, sample proportion, and population proportion

The sample size is equal to n=1234.

The sample proportion of overcharged items is computed below.

p^=NumberofitemsthatwereoverchargesSampleSize=201234=0.016

The population proportion of overcharged items is equal to 0.016.

04

Test statistic

The value of the test statistic is computed below.

z=p^-ppqn=0.016-0.010.011-0.011234=2.118

Thus, z=2.118.

05

Critical value and p-value

Referring to the standard normal table, the critical value of z at for a two-tailed test is equal to 1.96.

Referring to the standard normal table, the p-value for the test statistic value of 2.118 is equal to 0.0342.

As the p-value is less than 0.05, the null hypothesis is rejected.

06

Conclusion of the test

There is enough evidence to reject the claim that the proportion of sales that are overcharged is equal to 1%.

It can be seen that the sample proportion of overcharged items isgreater than 1% (1.6%). Thus, it can be said that the scanners are working efficiently and helping in identifying items that are overcharged.

Thus, the scanners help the customers to avoid overcharges.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Test Statistics. In Exercises 13–16, refer to the exercise identified and find the value of the test statistic. (Refer to Table 8-2 on page 362 to select the correct expression for evaluating the test statistic.)

16. Exercise 8 “Pulse Rates”

Technology. In Exercises 9–12, test the given claim by using the display provided from technology. Use a 0.05 significance level. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Old Faithful Data Set 23 “Old Faithful” in Appendix B includes data from 250 random eruptions of the Old Faithful geyser. The National Park Service makes predictions of times to the next eruption, and the data set includes the errors (minutes) in those predictions. The accompanying Statdisk display results from using the prediction errors (minutes) to test the claim that the mean prediction error is equal to zero. Comment on the accuracy of the predictions.

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Is the Diet Practical? When 40 people used the Weight Watchers diet for one year, their mean weight loss was 3.0 lb and the standard deviation was 4.9 lb (based on data from “Comparison of the Atkins, Ornish, Weight Watchers, and Zone Diets for Weight Loss and Heart Disease Reduction,” by Dansinger et al., Journal of the American Medical Association, Vol. 293, No. 1). Use a 0.01 significance level to test the claim that the mean weight loss is greater than 0. Based on these results, does the diet appear to have statistical significance? Does the diet appear to have practical significance?

Final Conclusions. In Exercises 25–28, use a significance level of = 0.05 and use the given information for the following:

a. State a conclusion about the null hypothesis. (Reject H0 or fail to reject H0.)

b. Without using technical terms or symbols, state a final conclusion that addresses the original claim.

Original claim: Fewer than 90% of adults have a cell phone. The hypothesis test results in a P-value of 0.0003.

Final Conclusions. In Exercises 25–28, use a significance level of α= 0.05 and use the given information for the following:

a. State a conclusion about the null hypothesis. (Reject H0 or fail to reject H0.)

b. Without using technical terms or symbols, state a final conclusion that addresses the original claim.

Original claim: The mean pulse rate (in beats per minute) of adult males is 72 bpm. The hypothesis test results in a P-value of 0.0095.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free