Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Touch Therapy Repeat the preceding exercise using a 0.01 significance level. Does the conclusion change?

Short Answer

Expert verified

Null hypothesis: The proportion of correct guesses is equal to 0.5.

Alternative hypothesis: The proportion of correct guesses is not equal to 0.5.

Test statistic: -2.032

Critical value: 2.5758

P-value: 0.0422

The null hypothesis is failed to reject.

There is not enough evidence to reject the claim that the touch therapists randomly guess the correct answer.

Step by step solution

01

Given information

Out of 280 trials, 123 guesses were correct by the touch therapists. It is claimed that that touch therapists randomly guess the answer.

02

Hypotheses

The null hypothesis is written as follows.

The proportion of correct guesses is equal to 0.5.

\({H_0}:p = 0.5\).

The alternative hypothesis is written as follows.

The proportion of correct guesses is not equal to 0.5.

\({H_1}:p \ne 0.5\).

The test is two-tailed.

03

Sample size, sample proportion,and population proportion

The sample size is n=280.

The sample proportion of correct guesses is computed below.

\[\begin{array}{c}\hat p = \frac{{{\rm{Number}}\;{\rm{of}}\;{\rm{correct}}\;{\rm{guesses}}}}{{{\rm{Sample}}\;{\rm{Size}}}}\\ = \frac{{123}}{{280}}\\ = 0.439\end{array}\].

The population proportion of correct guesses is equal to 0.5.

04

Test statistic

The value of the test statistic is computed below.

\(\begin{array}{c}z = \frac{{\hat p - p}}{{\sqrt {\frac{{pq}}{n}} }}\\ = \frac{{0.439 - 0.5}}{{\sqrt {\frac{{0.5\left( {1 - 0.5} \right)}}{{280}}} }}\\ = - 2.032\end{array}\).

Thus, z=-2.032.

05

Critical value and p-value

Referring to the standard normal table, the critical value of z at\(\alpha = 0.01\)for a two-tailed test is equal to 2.5758.

Referring to the standard normal table, the p-value for the test statistic value of -2.032 is equal to 0.0422.

Asthe p-value is greaterthan 0.01, the null hypothesis is failed to reject.

06

Conclusion of the test

There is not enough evidence to reject the claim that the touch therapists randomly guess the correct answer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Identifying H0and H1. In Exercises 5–8, do the following:

a. Express the original claim in symbolic form.

b. Identify the null and alternative hypotheses.

Pulse Rates Claim: The standard deviation of pulse rates of adult males is more than 11 bpm. For the random sample of 153 adult males in Data Set 1 “Body Data” in Appendix B, the pulse rates have a standard deviation of 11.3 bpm.

Finding P-values. In Exercises 5–8, either use technology to find the P-value or use Table A-3 to find a range of values for the P-value7. Old Faithful. The claim is that for the duration times (sec) of eruptions of the Old Faithful geyser, the mean is μ=240sec. The sample size is n = 6 and the test statistic is t = 1.340.

Lead in Medicine Listed below are the lead concentrations (in ) measured in different Ayurveda medicines. Ayurveda is a traditional medical system commonly used in India. The lead concentrations listed here are from medicines manufactured in the United States (based on data from “Lead, Mercury, and Arsenic in US and Indian Manufactured Ayurvedic Medicines Sold via the Internet,” by Saper et al., Journal of the American Medical Association,Vol. 300, No. 8). Use a 0.05 significance level to test the claim that the mean lead concentration for all such medicines is less than 14 μg/g.

3.0 6.5 6.0 5.5 20.5 7.5 12.0 20.5 11.5 17.5

In Exercises 13–16, refer to the exercise identified and find the value of the test statistic. (Refer to Table 8-2 on page 362 to select the correct expression for evaluating the test statistic.)

Exercise 6 “Cell Phone”

In Exercises 9–12, refer to the exercise identified. Make subjective estimates to decide whether results are significantly low or significantly high, then state a conclusion about the original claim. For example, if the claim is that a coin favours heads and sample results consist of 11 heads in 20 flips, conclude that there is not sufficient evidence to support the claim that the coin favours heads (because it is easy to get 11 heads in 20 flips by chance with a fair coin).

Exercise 8 “Pulse Rates”

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free