Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Critical Values. In Exercises 21–24, refer to the information in the given exercise and do the following.

a. Find the critical value(s).

b. Using a significance level of \(\alpha \)= 0.05, should we reject \({H_0}\)or should we fail to reject \({H_0}\)?

Short Answer

Expert verified

a.The critical value is equal to -1.645.

b.The null hypothesis is rejected.

Step by step solution

01

Given information

A test statistic value of \(z = - 2.50\) is obtained, and the claim to be tested is \(p < 0.75\).

02

Hypotheses and tail of the test

In correspondence with the given claim, the following hypotheses are set up:

Null Hypothesis:\(p = 0.75\)

Alternative Hypothesis:\(p < 0.75\)

Since there is a lesser than sign in the alternative hypothesis, the test is left-tailed.

03

Critical value

a.

Referring to the standard normal table, the critical value of z corresponding to the left-tailed test at \(\alpha = 0.05\) is equal to -1.645.

04

Decision about the test

b.

If the absolute value of the test statistic is greater than the critical value, then the null hypothesis is rejected.

Here, the absolute value of the test statistic (2.50) is greater than the critical value (-1.645). Thus, the null hypothesis is rejected.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Mickey D’s In a study of the accuracy of fast food drive-through orders, McDonald’s had 33 orders that were not accurate among 362 orders observed (based on data from QSR magazine). Use a 0.05 significance level to test the claim that the rate of inaccurate orders is equal to 10%. Does the accuracy rate appear to be acceptable?

P-Values. In Exercises 17–20, do the following:

a. Identify the hypothesis test as being two-tailed, left-tailed, or right-tailed.

b. Find the P-value. (See Figure 8-3 on page 364.)

c. Using a significance level of α= 0.05, should we reject or should we fail to reject ?

The test statistic of z = 1.00 is obtained when testing the claim that p>0.3.

t Test Exercise 2 refers to a t test. What is the t test? Why is the letter t used? What is unrealistic about the z test methods in Part 2 of this section?

Finding P-values. In Exercises 5–8, either use technology to find the P-value or use Table A-3 to find a range of values for the P-value7. Old Faithful. The claim is that for the duration times (sec) of eruptions of the Old Faithful geyser, the mean is μ=240sec. The sample size is n = 6 and the test statistic is t = 1.340.

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Is Nessie Real? This question was posted on the America Online website: Do you believe the Loch Ness monster exists? Among 21,346 responses, 64% were “yes.” Use a 0.01 significance level to test the claim that most people believe that the Loch Ness monster exists. How is the conclusion affected by the fact that Internet users who saw the question could decide whether to respond?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free