Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Got a Minute? Students of the author estimated the length of one minute without reference to a watch or clock, and the times (seconds) are listed below. Use a 0.05 significance level to test the claim that these times are from a population with a mean equal to 60 seconds. Does it appear that students are reasonably good at estimating one minute?

69 81 39 65 42 21 60 63 66 48 64 70 96 91 65

Short Answer

Expert verified

There is not sufficient evidence to accept the claim that these times are from a population with a mean equal to 60 seconds; and it appears that the students are good at estimating one minute.

Step by step solution

01

Given information

Sample times which the students took to estimate the length of one minute are given (in seconds) 69 81 39 65 42 21 60 63 66 48 64 70 96 91 65.

02

Check the requirements

The t-distribution would be used here assuming that the population is normally distributed and the samples are randomly selected.

Thus, the sample size (n) of thestudents who estimated the length of one minuteis 15.

03

Describe the hypothesis

Null hypothesis H0is a statement of claim that thetimes are from a population with a mean equal to 60 seconds.

Alternate hypothesisH1is a statement of claim that thetimes are from a population with a mean is not equal to 60 seconds.

Assume μbe the true mean times for the population.

Mathematically, it can be expressed as,

H0:μ=60H1:μ60

The test is two-tailed.

04

Calculate the test statistic

Formula for test statistic is given by,

t=x¯-μsn

Where , x¯is the sample mean and s is the standard deviation of the sample and is the value of population mean which is used in null hypothesis.

Using the given data, the mean is computed as,

x¯=xin=69+81+39+...+6515=62.67

The sample standard deviation is computed as,

s=xi-x¯2n-1=69-62.672+81-62.672+...+65-62.67215-1=19.48

By substituting this values, test statistics is given by,

t=x¯-μsn=62.66-6019.4815=0.5301

05

Calculate the critical value 

The degree of freedom is,

df=n-1=15-1=14

In the t-distribution table, find the value corresponding to the row value of degree of freedom 14 and column value of area in one tail 0.025 is 2.145 which is critical value t0.025therefore use 2.145 as a critical value.

Thus, the critical value role="math" localid="1649067349226" t0.025 is 2.145.

The rejection region is t:t>2.145andt<-2.145.

06

Compare test statistic and critical value.

Test statistic is 0.5301 and the critical values are ±2.145.

According to this, we can conclude that the test statistics 0.5301 will not fall in the rejection region.

Therefore, we fail to reject the null hypothesis.

07

Conclusion

Therefore, there is not sufficient evidence to support the claim that there is significant difference between mean of times from true population and the hypothesis mean.

Thus, students are reasonably good at estimating one minute as the mean time is not significantly different from 60 seconds.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Using Confidence Intervals to Test Hypotheseswhen analyzing the last digits of telephone numbers in Port Jefferson, it is found that among 1000 randomly selected digits, 119 are zeros. If the digits are randomly selected, the proportion of zeros should be 0.1.

a.Use the critical value method with a 0.05 significance level to test the claim that the proportion of zeros equals 0.1.

b.Use the P-value method with a 0.05 significance level to test the claim that the proportion of zeros equals 0.1.

c.Use the sample data to construct a 95% confidence interval estimate of the proportion of zeros. What does the confidence interval suggest about the claim that the proportion of zeros equals 0.1?

d.Compare the results from the critical value method, the P-value method, and the confidence interval method. Do they all lead to the same conclusion?

Identifying H0and H1. In Exercises 5–8, do the following:

a. Express the original claim in symbolic form.

b. Identify the null and alternative hypotheses.

Cell Phone Claim: Fewer than 95% of adults have a cell phone. In a Marist poll of 1128 adults, 87% said that they have a cell phone.

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Speed Dating Data Set 18 “Speed Dating” in Appendix B includes “attractive” ratings of male dates made by the female dates. The summary statistics are n = 199, x = 6.19, s = 1.99. Use a 0.01 significance level to test the claim that the population mean of such ratings is less than 7.00.

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Bias in Jury SelectionIn the case of Casteneda v. Partida,it was found that during a period of 11 years in Hidalgo County, Texas, 870 people were selected for grand jury duty and 39% of them were Americans of Mexican ancestry. Among the people eligible for grand jury duty, 79.1% were Americans of Mexican ancestry. Use a 0.01 significance level to test the claim that the selection process is biased against Americans of Mexican ancestry. Does the jury selection system appear to be biased?

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Super Bowl Wins Through the sample of the first 49 Super Bowls, 28 of them were won by teams in the National Football Conference (NFC). Use a 0.05 significance level to test the claim that the probability of an NFC team Super Bowl win is greater than one-half.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free