Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Critical Values. In Exercises 21–24, refer to the information in the given exercise and do the following.

a. Find the critical value(s).

b. Using a significance level of \(\alpha \)= 0.05, should we reject \({H_0}\)or should we fail to reject \({H_0}\)?

Short Answer

Expert verified

a.The critical value is equal to 1.645.

b.The decision of the statistical test is to fail to reject \({H_0}\).

Step by step solution

01

Given information

A test statistic value of \(z = 1.00\) is obtained, and the claim to be tested is \(p > 0.3\).

02

Hypotheses and tail of the test

In correspondence with the given claim, the following hypotheses are set up:

Null Hypothesis:\(p = 0.3\)

Alternative Hypothesis:\(p > 0.3\)

Since there is a greater than sign in the alternative hypothesis, the test is right-tailed.

03

Critical value

a.

Referring to the standard normal table, the critical value of z corresponding to the right-tailed test at \(\alpha = 0.05\) is equal to 1.645.

04

Decision about the test

b.

If the test statistic value is greater than the critical value, then the null hypothesis is rejected.

Here, the test statistic value (1.00) is less than the critical value (1.645), so the decision is to fail to reject the null hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Car Booster Seats The National Highway Traffic Safety Administration conducted crash tests of child booster seats for cars. Listed below are results from those tests, with the measurements given in hic (standard head injury condition units). The safety requirement is that the hic measurement should be less than 1000 hic. Use a 0.01 significance level to test the claim that the sample is from a population with a mean less than 1000 hic. Do the results suggest that all of the child booster seats meet the specified requirement?

774 649 1210 546 431 612

In Exercises 9–12, refer to the exercise identified. Make subjective estimates to decide whether results are significantly low or significantly high, then state a conclusion about the original claim. For example, if the claim is that a coin favours heads and sample results consist of 11 heads in 20 flips, conclude that there is not sufficient evidence to support the claim that the coin favours heads (because it is easy to get 11 heads in 20 flips by chance with a fair coin).

Exercise 8 “Pulse Rates”

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Cans of Coke Data Set 26 “Cola Weights and Volumes” in Appendix B includes volumes (ounces) of a sample of cans of regular Coke. The summary statistics are n = 36, x = 12.19 oz, s = 0.11 oz. Use a 0.05 significance level to test the claim that cans of Coke have a mean volume of 12.00 ounces. Does it appear that consumers are being cheated?

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Heights of Supermodels Listed below are the heights (cm) for the simple random sample of female supermodels Lima, Bundchen, Ambrosio, Ebanks, Iman, Rubik, Kurkova, Kerr,Kroes, Swanepoel, Prinsloo, Hosk, Kloss, Robinson, Heatherton, and Refaeli. Use a 0.01 significance level to test the claim that supermodels have heights with a mean that is greater than the mean height of 162 cm for women in the general population. Given that there are only 16 heights represented, can we really conclude that supermodels are taller than the typical woman?

178 177 176 174 175 178 175 178 178 177 180 176 180 178 180 176

Finding P-values. In Exercises 5–8, either use technology to find the P-value or use Table A-3 to find a range of values for the P-value.

Airport Data Speeds: The claim that for Verizon data speeds at airports, the mean. The sample size is and the test statistic is

t =-1.625 .

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free