Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Touch Therapy When she was 9 years of age, Emily Rosa did a science fair experiment in which she tested professional touch therapists to see if they could sense her energy field. She flipped a coin to select either her right hand or her left hand, and then she asked the therapists to identify the selected hand by placing their hand just under Emily’s hand without seeing it and without touching it. Among 280 trials, the touch therapists were correct 123 times (based on data in “A Close Look at Therapeutic Touch,” Journal of the American Medical Association, Vol. 279, No. 13). Use a 0.10 significance level to test the claim that touch therapists use a method equivalent to random guesses. Do the results suggest that touch therapists are effective?

Short Answer

Expert verified

Null hypothesis: The proportion of correct guesses is equal to 0.5.

Alternative hypothesis: The proportion of correct guesses is not equal to 0.5.

Test statistic: -2.032

Critical value: 1.645

P-value: 0.0422

The null hypothesis is rejected.

There is enough evidence to reject the claim that the touch therapists randomly guess the correct answer.

It can be concluded that touch therapists are not effective because the sample proportion of correct guesses equal to 43.9% is even less than 50%.

Step by step solution

01

Given information

Out of 280 trials, 123 guesses are correct by the touch therapists. It is claimed that that touch therapists randomly guess the answer.

02

Hypotheses

The null hypothesis is written as follows.

The proportion of correct guesses is equal to 0.5.

H0:p=0.5

The alternative hypothesis is written as follows.

The proportion of correct guesses is not equal to 0.5.

H1:p0.5

The test is two-tailed.

03

Sample size, sample proportion, and population proportion

The sample size is n=280.

The sample proportion of correct guesses is computed below.

p^=NumberofcorrectguessesSampleSize=123280=0.439

The population proportion of correct guesses is equal to 0.5.

04

Test statistic

The value of the test statistic is computed below.

z=p^-ppqn=0.439-0.50.51-0.5280=-2.032

Thus, z=-2.032.

05

Critical value and p-value

Referring to the standard normal table, the critical value of z at α=0.10 for a two-tailed test is equal to 1.645.

Referring to the standard normal table, the p-value for the test statistic value of -2.032 is equal to 0.0422.

As the p-value is less than 0.10, the null hypothesis is rejected.

06

Conclusion of the test

There is enough evidence to reject the claim that the touch therapists randomly guess the correct answer.

As the sample proportion of correct guesses equal to 43.9% is even less than 50% (as proposed by the method of random guesses), it can be said that touch therapists are not at all effective.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

How Many English Words? A simple random sample of 10 pages from Merriam-Webster’s Collegiate Dictionary is obtained. The numbers of words defined on those pages are found, with these results: n = 10, x = 53.3 words, s = 15.7 words. Given that this dictionary has 1459 pages with defined words, the claim that there are more than 70,000 defined words is equivalent to the claim that the mean number of words per page is greater than 48.0 words. Assume a normally distributed population. Use a 0.01 significance level to test the claim that the mean number of words per page is greater than 48.0 words. What does the result suggest about the claim that there are more than 70,000 defined words?

Using Technology. In Exercises 5–8, identify the indicated values or interpret the given display. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section. Use α= 0.05 significance level and answer the following:

a. Is the test two-tailed, left-tailed, or right-tailed?

b. What is the test statistic?

c. What is the P-value?

d. What is the null hypothesis, and what do you conclude about it?

e. What is the final conclusion?

Adverse Reactions to Drug The drug Lipitor (atorvastatin) is used to treat high cholesterol. In a clinical trial of Lipitor, 47 of 863 treated subjects experienced headaches (based on data from Pfizer). The accompanying TI@83/84 Plus calculator display shows results from a test of the claim that fewer than 10% of treated subjects experience headaches.

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Drug Screening The company Drug Test Success provides a “1-Panel-THC” test for marijuana usage. Among 300 tested subjects, results from 27 subjects were wrong (either a false positive or a false negative). Use a 0.05 significance level to test the claim that less than 10% of the test results are wrong. Does the test appear to be good for most purposes?

In Exercises 1–4, use these results from a USA Today survey in which 510 people chose to respond to this question that was posted on the USA Today website: “Should Americans replace passwords with biometric security (fingerprints, etc)?” Among the respondents, 53% said “yes.” We want to test the claim that more than half of the population believes that passwords should be replaced with biometric security.

Requirements and Conclusions

a. Are any of the three requirements violated? Can the methods of this section be used to test the claim?

b. It was stated that we can easily remember how to interpret P-values with this: “If the P is low, the null must go.” What does this mean?

c. Another memory trick commonly used is this: “If the P is high, the null will fly.” Given that a hypothesis test never results in a conclusion of proving or supporting a null hypothesis, how is this memory trick misleading?

d. Common significance levels are 0.01 and 0.05. Why would it be unwise to use a significance level with a number like 0.0483?

The Ericsson method is one of several methods claimed to increase the likelihood of a baby girl. In a clinical trial, results could be analysed with a formal hypothesis test with the alternative hypothesis of p>0.5, which corresponds to the claim that the method increases the likelihood of having a girl, so that the proportion of girls is greater than 0.5. If you have an interest in establishing the success of the method, which of the following P-values would you prefer: 0.999, 0.5, 0.95, 0.05, 0.01, and 0.001? Why?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free