Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Touch Therapy When she was 9 years of age, Emily Rosa did a science fair experiment in which she tested professional touch therapists to see if they could sense her energy field. She flipped a coin to select either her right hand or her left hand, and then she asked the therapists to identify the selected hand by placing their hand just under Emily’s hand without seeing it and without touching it. Among 280 trials, the touch therapists were correct 123 times (based on data in “A Close Look at Therapeutic Touch,” Journal of the American Medical Association, Vol. 279, No. 13). Use a 0.10 significance level to test the claim that touch therapists use a method equivalent to random guesses. Do the results suggest that touch therapists are effective?

Short Answer

Expert verified

Null hypothesis: The proportion of correct guesses is equal to 0.5.

Alternative hypothesis: The proportion of correct guesses is not equal to 0.5.

Test statistic: -2.032

Critical value: 1.645

P-value: 0.0422

The null hypothesis is rejected.

There is enough evidence to reject the claim that the touch therapists randomly guess the correct answer.

It can be concluded that touch therapists are not effective because the sample proportion of correct guesses equal to 43.9% is even less than 50%.

Step by step solution

01

Given information

Out of 280 trials, 123 guesses are correct by the touch therapists. It is claimed that that touch therapists randomly guess the answer.

02

Hypotheses

The null hypothesis is written as follows.

The proportion of correct guesses is equal to 0.5.

H0:p=0.5

The alternative hypothesis is written as follows.

The proportion of correct guesses is not equal to 0.5.

H1:p0.5

The test is two-tailed.

03

Sample size, sample proportion, and population proportion

The sample size is n=280.

The sample proportion of correct guesses is computed below.

p^=NumberofcorrectguessesSampleSize=123280=0.439

The population proportion of correct guesses is equal to 0.5.

04

Test statistic

The value of the test statistic is computed below.

z=p^-ppqn=0.439-0.50.51-0.5280=-2.032

Thus, z=-2.032.

05

Critical value and p-value

Referring to the standard normal table, the critical value of z at α=0.10 for a two-tailed test is equal to 1.645.

Referring to the standard normal table, the p-value for the test statistic value of -2.032 is equal to 0.0422.

As the p-value is less than 0.10, the null hypothesis is rejected.

06

Conclusion of the test

There is enough evidence to reject the claim that the touch therapists randomly guess the correct answer.

As the sample proportion of correct guesses equal to 43.9% is even less than 50% (as proposed by the method of random guesses), it can be said that touch therapists are not at all effective.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Identifying H0and H1. In Exercises 5–8, do the following:

a. Express the original claim in symbolic form.

b. Identify the null and alternative hypotheses.

Cell Phone Claim: Fewer than 95% of adults have a cell phone. In a Marist poll of 1128 adults, 87% said that they have a cell phone.

Finding Critical t Values When finding critical values, we often need significance levels other than those available in Table A-3. Some computer programs approximate critical t values by calculating t=df×eA2/df-1where df = n-1, e = 2.718, A=z8×df+3/8×df+1, and z is the critical z score. Use this approximation to find the critical t score for Exercise 12 “Tornadoes,” using a significance level of 0.05. Compare the results to the critical t score of 1.648 found from technology. Does this approximation appear to work reasonably well?

Finding P-values. In Exercises 5–8, either use technology to find the P-value or use Table A-3 to find a range of values for the P-value.

Airport Data Speeds: The claim that for Verizon data speeds at airports, the mean. The sample size is and the test statistic is

t =-1.625 .

Type I and Type II Errors. In Exercises 29–32, provide statements that identify the type I error and the type II error that correspond to the given claim. (Although conclusions are usually expressed in verbal form, the answers here can be expressed with statements that include symbolic expressions such as p = 0.1.).

The proportion of people with blue eyes is equal to 0.35.

Finding P-values. In Exercises 5–8, either use technology to find the P-value or use Table A-3 to find a range of values for the P-value.

8. Tornadoes. The claim is that for the widths (yd) of tornadoes, the mean is μ<140 yd. The sample size is n = 21 and the test statistic is t = -0.024.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free