Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Finding Critical Values of \({\chi ^2}\) Repeat Exercise 19 using this approximation (with k and z as described in Exercise 19):

\({\chi ^2} = k{\left( {1 - \frac{2}{{9k}} + z\sqrt {\frac{2}{{9k}}} } \right)^3}\)

Short Answer

Expert verified

The estimated critical value is equal to 82.360. The value obtained is approximately equal to the value obtained using technology (82.292).

Step by step solution

01

Given information

A sample of the number of words spoken in a day is considered.

The sample size is equal to 56. The value of the degrees of freedom is equal to 55.

The value of the z-score is equal to 2.33. The actual critical value of \({\chi ^2}\) is equal to 82.292.

02

Compute the approximate critical value

The approximate critical value has the following formula:

\({\chi ^2} = k{\left( {1 - \frac{2}{{9k}} + z\sqrt {\frac{2}{{9k}}} } \right)^3}\).

The values are given as follows.

  • k is equal to 55.

Substitute the above values in the formula to obtain the critical value, as shown.
\(\begin{array}{c}{\chi ^2} = 55{\left( {1 - \frac{2}{{9 \times 55}} + 2.33 \times \sqrt {\frac{2}{{9 \times 55}}} } \right)^3}\\ \approx 82.360\end{array}\).

Thus, the critical value is equal to 82.360.

03

Comparison

The critical value of\({\chi ^2}\)obtained using the formula (82.360) isapproximately equalto the critical value of \({\chi ^2}\) obtained using technology (82.292).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 9โ€“32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Smoking Stopped In a program designed to help patients stop smoking, 198 patients were given sustained care, and 82.8% of them were no longer smoking after one month (based on data from โ€œSustained Care Intervention and Post discharge Smoking Cessation Among Hospitalized Adults,โ€ by Rigotti et al., Journal of the American Medical Association, Vol. 312, No. 7). Use a 0.01 significance level to test the claim that 80% of patients stop smoking when given sustained care. Does sustained care appear to be effective?

Finding P-values. In Exercises 5โ€“8, either use technology to find the P-value or use Table A-3 to find a range of values for the P-value.

Airport Data Speeds: The claim that for Verizon data speeds at airports, the mean. The sample size is and the test statistic is

t =-1.625 .

Testing Claims About Proportions. In Exercises 9โ€“32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

M&Ms Data Set 27 โ€œM&M Weightsโ€ in Appendix B lists data from 100 M&Ms, and 27% of them are blue. The Mars candy company claims that the percentage of blue M&Ms is equal to 24%. Use a 0.05 significance level to test that claim. Should the Mars company take corrective action?

Final Conclusions. In Exercises 25โ€“28, use a significance level of = 0.05 and use the given information for the following:

a. State a conclusion about the null hypothesis. (Reject H0or fail to reject H0.)

b. Without using technical terms or symbols, state a final conclusion that addresses the original claim.

Original claim: More than 58% of adults would erase all of their personal information online if they could. The hypothesis test results in a P-value of 0.3257.

Using Confidence Intervals to Test Hypotheseswhen analyzing the last digits of telephone numbers in Port Jefferson, it is found that among 1000 randomly selected digits, 119 are zeros. If the digits are randomly selected, the proportion of zeros should be 0.1.

a.Use the critical value method with a 0.05 significance level to test the claim that the proportion of zeros equals 0.1.

b.Use the P-value method with a 0.05 significance level to test the claim that the proportion of zeros equals 0.1.

c.Use the sample data to construct a 95% confidence interval estimate of the proportion of zeros. What does the confidence interval suggest about the claim that the proportion of zeros equals 0.1?

d.Compare the results from the critical value method, the P-value method, and the confidence interval method. Do they all lead to the same conclusion?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free