Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

P-Values. In Exercises 17–20, do the following:

a. Identify the hypothesis test as being two-tailed, left-tailed, or right-tailed.

b. Find the P-value. (See Figure 8-3 on page 364.)

c. Using a significance level of = 0.05, should we reject H0or should we fail to reject H0?

The test statistic of z = -1.94 is obtained when testing the claim that p=38 .

Short Answer

Expert verified

a. The test is two-tailed.

b. The p-value is equal to 0.0524.

c. The decision of the statistical test is to fail to reject H0.

Step by step solution

01

Given information

A test statistic value of z=-1.94 is obtained, and the claim to be tested is p=38.

02

Identify the hypotheses and tail of the test

a.

In correspondence with the given claim, the claim cannot be considered the alternative hypothesis as it always suggests a difference in the hypothesized value and the population parameter.

The given claim is assumed to be the null hypothesis.

Thus,

Null Hypothesis: p=38

Alternative Hypothesis: p38

Since there is a not-equal-to sign in the alternative hypothesis, the test is two-tailed.

03

P-value

b.

The test statistic to test the given claim is the z-value.

The z-value is equal to -1.94.

Using the standard normal table, the corresponding two-tailed p-value for z-score equal to -1.94 is equal to:

2Pz<-1.94=20.0262=0.0524

Thus, the p-value is equal to 0.0524.

To depict the p-value on the normal probability graph, follow the given steps:

  • Plot a horizontal axis representing the z-score. Also, label it as “z-score”.
  • Sketch a bell-shaped curve and draw a vertical dotted line corresponding to the value “0” on the horizontal axis
  • Mark the points “-1.94” and “1.94” on the horizontal axis and then shade the area to the left of the value “-1.94” and to the right of the value “1.94” with blue as shown in the figure.
  • Label the shaded regions as “p-value = 0.0262”.

The following plot shows the probability value (p-value) as the shaded area under the normal probability graph. Here, the sum of the two p-values correspond to the required two-tailed p-value (0.0524).

04

Decision about the test

c.

If the p-value is less than the level of significance, the null hypothesis is rejected; otherwise, not.

Here, the level of significance is equal to 0.05, and the p-value is equal to 0.0524.

Since the p-value is greater than 0.05, so the decision is to fail to reject the null hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Identifying H0and H1. In Exercises 5–8, do the following:

a. Express the original claim in symbolic form.

b. Identify the null and alternative hypotheses.

Cell Phone Claim: Fewer than 95% of adults have a cell phone. In a Marist poll of 1128 adults, 87% said that they have a cell phone.

P-Values. In Exercises 17–20, do the following:

a. Identify the hypothesis test as being two-tailed, left-tailed, or right-tailed.

b. Find the P-value. (See Figure 8-3 on page 364.)

c. Using a significance level of α= 0.05, should we reject or should we fail to reject ?

The test statistic of z = 1.00 is obtained when testing the claim that p>0.3.

In Exercises 9–12, refer to the exercise identified. Make subjective estimates to decide whether results are significantly low or significantly high, then state a conclusion about the original claim. For example, if the claim is that a coin favours heads and sample results consist of 11 heads in 20 flips, conclude that there is not sufficient evidence to support the claim that the coin favours heads (because it is easy to get 11 heads in 20 flips by chance with a fair coin).

Exercise 6 “Cell Phone”

t Test Exercise 2 refers to a t test. What is the t test? Why is the letter t used? What is unrealistic about the z test methods in Part 2 of this section?

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Mendelian Genetics When Mendel conducted his famous genetics experiments with peas, one sample of offspring consisted of 428 green peas and 152 yellow peas. Use a 0.01 significance level to test Mendel’s claim that under the same circumstances, 25% of offspring peas will be yellow. What can we conclude about Mendel’s claim?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free