Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

P-Values. In Exercises 17–20, do the following:

a. Identify the hypothesis test as being two-tailed, left-tailed, or right-tailed.

b. Find the P-value. (See Figure 8-3 on page 364.)

c. Using a significance level of = 0.05, should we reject H0or should we fail to reject H0?

The test statistic of z = -1.94 is obtained when testing the claim that p=38 .

Short Answer

Expert verified

a. The test is two-tailed.

b. The p-value is equal to 0.0524.

c. The decision of the statistical test is to fail to reject H0.

Step by step solution

01

Given information

A test statistic value of z=-1.94 is obtained, and the claim to be tested is p=38.

02

Identify the hypotheses and tail of the test

a.

In correspondence with the given claim, the claim cannot be considered the alternative hypothesis as it always suggests a difference in the hypothesized value and the population parameter.

The given claim is assumed to be the null hypothesis.

Thus,

Null Hypothesis: p=38

Alternative Hypothesis: p38

Since there is a not-equal-to sign in the alternative hypothesis, the test is two-tailed.

03

P-value

b.

The test statistic to test the given claim is the z-value.

The z-value is equal to -1.94.

Using the standard normal table, the corresponding two-tailed p-value for z-score equal to -1.94 is equal to:

2Pz<-1.94=20.0262=0.0524

Thus, the p-value is equal to 0.0524.

To depict the p-value on the normal probability graph, follow the given steps:

  • Plot a horizontal axis representing the z-score. Also, label it as “z-score”.
  • Sketch a bell-shaped curve and draw a vertical dotted line corresponding to the value “0” on the horizontal axis
  • Mark the points “-1.94” and “1.94” on the horizontal axis and then shade the area to the left of the value “-1.94” and to the right of the value “1.94” with blue as shown in the figure.
  • Label the shaded regions as “p-value = 0.0262”.

The following plot shows the probability value (p-value) as the shaded area under the normal probability graph. Here, the sum of the two p-values correspond to the required two-tailed p-value (0.0524).

04

Decision about the test

c.

If the p-value is less than the level of significance, the null hypothesis is rejected; otherwise, not.

Here, the level of significance is equal to 0.05, and the p-value is equal to 0.0524.

Since the p-value is greater than 0.05, so the decision is to fail to reject the null hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Tennis Instant Replay The Hawk-Eye electronic system is used in tennis for displaying an instant replay that shows whether a ball is in bounds or out of bounds so players can challenge calls made by referees. In a recent U.S. Open, singles players made 879 challenges and 231 of them were successful, with the call overturned. Use a 0.01 significance level to test the claim that fewer than 1/ 3 of the challenges are successful. What do the results suggest about the ability of players to see calls better than referees?

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Eliquis The drug Eliquis (apixaban) is used to help prevent blood clots in certain patients. In clinical trials, among 5924 patients treated with Eliquis, 153 developed the adverse reaction of nausea (based on data from Bristol-Myers Squibb Co.). Use a 0.05 significance level to test the claim that 3% of Eliquis users develop nausea. Does nausea appear to be a problematic adverse reaction?

Using Technology. In Exercises 5–8, identify the indicated values or interpret the given display. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section. Use = 0.05 significance level and answer the following:

a. Is the test two-tailed, left-tailed, or right-tailed?

b. What is the test statistic?

c. What is the P-value?

d. What is the null hypothesis, and what do you conclude about it?

e. What is the final conclusion?

Biometric Security In a USA Today survey of 510 people, 53% said that we should replace passwords with biometric security, such as fingerprints. The accompanying Statdisk display results from a test of the claim that half of us say that we should replace passwords with biometric security.

Video Games: Checking Requirements Twelve different video games showing alcohol use were observed. The duration times of alcohol use were recorded, with the times (seconds) listed below (based on data from “content and rating of Teen-Rated Video Games,” by Haninger and Thompson, journal of the American Medical Association, Vol.291, No.7). What requirements must be satisfied to test the claim that the sample is from a population with a mean greater than 90 sec? Are the requirements all satisfied?

84 14 583 50 0 57 207 43 178 0 2 57

Test Statistics. In Exercises 13–16, refer to the exercise identified and find the value of the test statistic. (Refer to Table 8-2 on page 362 to select the correct expression for evaluating the test statistic.)

Exercise 5 “Online Data”

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free