Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

P-Values. In Exercises 17–20, do the following:

a. Identify the hypothesis test as being two-tailed, left-tailed, or right-tailed.

b. Find the P-value. (See Figure 8-3 on page 364.)

c. Using a significance level of α = 0.05, should we reject H0or should we fail to reject H0?

The test statistic of z = 2.01 is obtained when testing the claim that p0.345.

Short Answer

Expert verified

a. The test is two-tailed.

b. The p-value is equal to 0.0444.

c. The null hypothesis is rejected.

Step by step solution

01

Given Information

A test statistic value of z=2.01 is obtained, and the claim to be tested is p0.345.

02

Identify the hypotheses and tail of the test

a.

In correspondence with the given claim, the following hypotheses are set up:

Null Hypothesis: p=0.345

Alternative Hypothesis: p0.345

Since there is a not equal sign in the alternative hypothesis, the test is two-tailed.

03

P-value

b.

The test statistic to test the given claim is the z-value.

The z-value is equal to 2.01.

Using the standard normal table, the corresponding two-tailed p-value for z-score equal to 2.01 is equal to:

2×Pz<2.01=2×0.0222=0.0444

Thus, the p-value is equal to 0.0444.

To depict the p-value on the normal probability graph, follow the given steps:

  • Plot a horizontal axis representing the z-score. Also, label it as “z-score”.
  • Sketch a bell-shaped curve and draw a vertical dotted line corresponding to the value “0” on the horizontal axis
  • Mark the points “-2.01” and “2.01” on the horizontal axis and then shade the area to the left of the value “-2.01” and to the right of the value “2.01” with blue as shown in the figure.
  • Label the two shaded regions as “p-value = 0.0222”.

The following plot shows the probability value (p-value) as the shaded area under the normal probability graph. Here, the sum of the two p-values corresponds to the requited two-tailed p-value (0.0444).

04

Decision about the test

c.

If the p-value is less than the level of significance, the null hypothesis is rejected; otherwise, not.

Here, the level of significance is equal to 0.05, and the p-value is equal to 0.0444.

Since the p-value is less than 0.05, the null hypothesis is rejected.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

P-Values. In Exercises 17–20, do the following:

a. Identify the hypothesis test as being two-tailed, left-tailed, or right-tailed.

b. Find the P-value. (See Figure 8-3 on page 364.)

c. Using a significance level of = 0.05, should we reject H0or should we fail to reject H0?

The test statistic of z = -1.94 is obtained when testing the claim that p=38 .

Vitamin C and Aspirin A bottle contains a label stating that it contains Spring Valley pills with 500 mg of vitamin C, and another bottle contains a label stating that it contains Bayer pills with 325 mg of aspirin. When testing claims about the mean contents of the pills, which would have more serious implications: rejection of the Spring Valley vitamin C claim or rejection of the Bayer aspirin claim? Is it wise to use the same significance level for hypothesis tests about the mean amount of vitamin C and the mean amount of aspirin?

Estimates and Hypothesis Tests Data Set 3 “Body Temperatures” in Appendix B includes sample body temperatures. We could use methods of Chapter 7 for making an estimate, or we could use those values to test the common belief that the mean body temperature is 98.6°F. What is the difference between estimating and hypothesis testing?

Cans of coke use the data and the claim given in exercise 1 to identify the null and alternative hypothesis and the test statistic. What is the sampling distribution of the test statistic?

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Overtime Rule in Football Before the overtime rule in the National Football League was changed in 2011, among 460 overtime games, 252 were won by the team that won the coin toss at the beginning of overtime. Using a 0.05 significance level, test the claim that the coin toss is fair in the sense that neither team has an advantage by winning it. Does the coin toss appear to be fair?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free