Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

How Many English Words? A simple random sample of 10 pages from Merriam-Webster’s Collegiate Dictionary is obtained. The numbers of words defined on those pages are found, with these results: n = 10, x = 53.3 words, s = 15.7 words. Given that this dictionary has 1459 pages with defined words, the claim that there are more than 70,000 defined words is equivalent to the claim that the mean number of words per page is greater than 48.0 words. Assume a normally distributed population. Use a 0.01 significance level to test the claim that the mean number of words per page is greater than 48.0 words. What does the result suggest about the claim that there are more than 70,000 defined words?

Short Answer

Expert verified

The hypotheses are stated as follows.

H0:μ=48.0H1:μ>48.0

The test statistic , and the critical value is .

The null hypothesis is rejected.

Therefore, the mean number of words per page is equal to 48.0. Equivalently, the results also suggest that there cannot be more than 70,000 defined words.

Step by step solution

01

Given information

The sample summary is stated as follows.

Sample size n=10.

Sample mean words x¯=53.3.

Sample standard deviation words s=15.7.

Level of significance α=0.01.

The claim states that the mean number of words per page is 48.0.

02

State the hypotheses

Null hypothesisH0 : The mean number of words per page is equal to 48.0.

Alternative hypothesis H1: The mean number of words per page is greater than 48.0.

For the population mean of words per page as μ, the hypotheses are stated as follows.

H0:μ=48.0H1:μ>48.0

The test is right-tailed.

03

Compute the test statistic

For a normally distributed population and a randomly selected sample, use student t-distribution if the population standard deviation is unknown.

The test statistic is given as follows.

t=x¯-μsn=53.3-4815.710=1.0675

Thus, the test statistic is 1.0675.

04

Compute the critical value

The level of significance is α=0.01.

The degree of freedom is computed as follows.

df=n-1=10-1=9

Refer to the t-table for the critical value corresponding to 9 degrees of freedom and the level of significance 0.01 for the one-tailed test, which is .

05

State the decision rule

The decision rule states the following:

If the test statistic is greater than the critical value, the null hypothesis will be rejected.

If the test statistic is not greater than the critical value, the null hypothesis will fail to be rejected.

Here, the test statistic is 1.067, which is lesser than 2.821. Thus, the null hypothesis is failed to be rejected at a 0.01 level of significance.

06

Conclusion

As the null hypothesis is failed to be rejected, it can be concluded that there is insufficient evidence to support the claim that the words per page are greater than 48.0.

As there are 1459 pages in the dictionary, the total number of 70000 words is equivalent to 48.0 words per page. Thus, it does not support the claim.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Got a Minute? Students of the author estimated the length of one minute without reference to a watch or clock, and the times (seconds) are listed below. Use a 0.05 significance level to test the claim that these times are from a population with a mean equal to 60 seconds. Does it appear that students are reasonably good at estimating one minute?

69 81 39 65 42 21 60 63 66 48 64 70 96 91 65

A formal hypothesis test is to be conducted using the claim that the mean height of men is equal to 174.1 cm.

a. What is the null hypothesis, and how is it denoted?

b. What is the alternative hypothesis, and how is it denoted?

c. What are the possible conclusions that can be made about the null hypothesis?

d. Is it possible to conclude that “there is sufficient evidence to support the claim that the mean height of men is equal to 174.1 cm”?

Type I and Type II Errors. In Exercises 29–32, provide statements that identify the type I error and the type II error that correspond to the given claim. (Although conclusions are usually expressed in verbal form, the answers here can be expressed with statements that include symbolic expressions such as p = 0.1.).

The proportion of adults who use the internet is greater than 0.87.

Video Games: Checking Requirements Twelve different video games showing alcohol use were observed. The duration times of alcohol use were recorded, with the times (seconds) listed below (based on data from “content and rating of Teen-Rated Video Games,” by Haninger and Thompson, journal of the American Medical Association, Vol.291, No.7). What requirements must be satisfied to test the claim that the sample is from a population with a mean greater than 90 sec? Are the requirements all satisfied?

84 14 583 50 0 57 207 43 178 0 2 57

In Exercises 1–4, use these results from a USA Today survey in which 510 people chose to respond to this question that was posted on the USA Today website: “Should Americans replace passwords with biometric security (fingerprints, etc)?” Among the respondents, 53% said “yes.” We want to test the claim that more than half of the population believes that passwords should be replaced with biometric security.

Requirements and Conclusions

a. Are any of the three requirements violated? Can the methods of this section be used to test the claim?

b. It was stated that we can easily remember how to interpret P-values with this: “If the P is low, the null must go.” What does this mean?

c. Another memory trick commonly used is this: “If the P is high, the null will fly.” Given that a hypothesis test never results in a conclusion of proving or supporting a null hypothesis, how is this memory trick misleading?

d. Common significance levels are 0.01 and 0.05. Why would it be unwise to use a significance level with a number like 0.0483?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free