Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

P-Values. In Exercises 17–20, do the following:

a. Identify the hypothesis test as being two-tailed, left-tailed, or right-tailed.

b. Find the P-value. (See Figure 8-3 on page 364.)

c. Using a significance level of α = 0.05, should we reject H0or should we fail to reject H0?

The test statistic of z = -2.50 is obtained when testing the claim that p<0.75

Short Answer

Expert verified

a. The test is left-tailed.

b. The p-value is equal to 0.0062.

c. The null hypothesis is rejected.

Step by step solution

01

Given Information

A test statistic value of z=-2.50 is obtained, and the claim to be tested is p<0.75.

02

Identify the hypotheses and tail of the test

a.

In correspondence with the given claim, the following hypotheses are set up:

Null Hypothesis: p=0.75

Alternative Hypothesis: p<0.75

Since there is a lesser than sign in the alternative hypothesis, the test is left-tailed.

03

P-value

b.

The test statistic to test the given claim is the z-value.

The z-value is equal to -2.50.

Using the standard normal table, the corresponding left-tailed p-value for z-score equal to -2.50 is equal to:

Pz<-2.50=0.0062

Thus, the p-value is equal to 0.0062.

To depict the p-value on the standard normal probability graph, follow the given steps:

  • Plot a horizontal axis representing the z-score. Also, label it as “z-score”.
  • Sketch a bell-shaped curve and draw a vertical dotted line corresponding to the value “0” on the horizontal axis
  • Mark the point “-2.5” on the horizontal axis and then shade the area to the left of the value “-2.5” with blue as shown in the figure.
  • Label the shaded region as “p-value = 0.0062”.

The plot below shows the p-value as the shaded area under the standard normal probability graph:

04

Decision about the test

c.

If the p-value is less than the level of significance, the null hypothesis is rejected; otherwise, not.

Here, the level of significance is equal to 0.05, and the p-value is equal to 0.0062.

Since the p-value is less than 0.05, the null hypothesis is rejected.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Finding P-values. In Exercises 5–8, either use technology to find the P-value or use Table A-3 to find a range of values for the P-value Body Temperatures The claim is that for 12 am body temperatures, the mean is μ<98.6°F.The sample size is n = 4 and the test statistic is t = -2.503.

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Postponing Death An interesting and popular hypothesis is that individuals can temporarily postpone death to survive a major holiday or important event such as a birthday. In a study, it was found that there were 6062 deaths in the week before Thanksgiving, and 5938 deaths the week after Thanksgiving (based on data from “Holidays, Birthdays, and Postponement of Cancer Death,” by Young and Hade, Journal of the American Medical Association, Vol. 292, No. 24). If people can postpone death until after Thanksgiving, then the proportion of deaths in the week before should be less than 0.5. Use a 0.05 significance level to test the claim that the proportion of deaths in the week before Thanksgiving is less than 0.5. Based on the result, does there appear to be any indication that people can temporarily postpone death to survive the Thanksgiving holiday?

Hypothesis Test with Known σ How do the results from Exercise 13 “Course Evaluations” change if σis known to be 0.53? Does the knowledge of σ have much of an effect?

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Lie Detectors Trials in an experiment with a polygraph yield 98 results that include 24 cases of wrong results and 74 cases of correct results (based on data from experiments conducted by researchers Charles R. Honts of Boise State University and Gordon H. Barland of the Department of Defense Polygraph Institute). Use a 0.05 significance level to test the claim that such polygraph results are correct less than 80% of the time. Based on the results, should polygraph test results be prohibited as evidence in trials?

Calculating Power Consider a hypothesis test of the claim that the Ericsson method of gender selection is effective in increasing the likelihood of having a baby girl, so that the claim is p>0.5. Assume that a significance level of α= 0.05 is used, and the sample is a simple random sample of size n = 64.

a. Assuming that the true population proportion is 0.65, find the power of the test, which is the probability of rejecting the null hypothesis when it is false. (Hint: With a 0.05 significance level, the critical value is z = 1.645, so any test statistic in the right tail of the accompanying top graph is in the rejection region where the claim is supported. Find the sample proportion in the top graph, and use it to find the power shown in the bottom graph.)

b. Explain why the green-shaded region of the bottom graph represents the power of the test.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free