Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Is the Diet Practical? When 40 people used the Weight Watchers diet for one year, their mean weight loss was 3.0 lb and the standard deviation was 4.9 lb (based on data from “Comparison of the Atkins, Ornish, Weight Watchers, and Zone Diets for Weight Loss and Heart Disease Reduction,” by Dansinger et al., Journal of the American Medical Association, Vol. 293, No. 1). Use a 0.01 significance level to test the claim that the mean weight loss is greater than 0. Based on these results, does the diet appear to have statistical significance? Does the diet appear to have practical significance?

Short Answer

Expert verified

The hypotheses are as follows.

H0:μ=0H1:μ>0

The test statistic is t=3.872, and the critical value is 2.426.

In this case, reject H0.Therefore, there is sufficient evidence that the mean weight loss is greater than 0.

The diet appears to have statistical significance, but due to a small weight loss mean of 3.0 lb, the diet does not have any practical significance.

Step by step solution

01

Given information

The summary for the weight loss for the weight watchers’ diet is as follows.

Sample size n=40.

Sample mean x¯=3.0lb.

Sample standard deviation s=4.9lb.

The level of significance α=0.01.

02

State the hypothesis

Null hypothesis: The mean weight loss is equal to 0.

H0:μ=0

Alternative hypothesis: The mean weight loss is greater than 0.

H0:μ>0

The test is right-tailed.

03

Compute the test statistic

As the sample is selected by random sampling along with a normally distributed population, the requirements of the t-test are satisfied. For an unknown population standard deviation, the t-test is appropriate.

The test statistic is given as follows.

t=x¯-μsn=3-04.940=3.872

.

04

Compute the critical value

The critical value is obtained with a significance level of 0.01, and the degree of freedom is computed as follows.

df=n-1=40-1=39

Refer to the t-table for the degrees of freedom 39 and the level of significance 0.01 for the one-tailed test to obtain the critical value 2.426t0.01.

05

State the decision rule

The decision rule states the following:

If the test statistic is greater than the critical value, the null hypothesis will be rejected.

If the test statistic is not greater than the critical value, the null hypothesis will fail to be rejected.

Here, the test statistic 3.872 is greater than the critical value of 2.426.

Thus, the null hypothesis will be rejected.

Thus, it can be concluded that there is sufficient evidence to support the claim that the mean weight loss is greater than 0.

06

Discuss the significance of the result

The result is statistically significant as the null hypothesis is rejected at a 0.01 level of significance. It implies that the diet has a statistically significant effect on weight loss among subjects.

On the other hand, the diet does not have any practical significance as the mean weight loss after the diet is 3.0 lb, which is not very high.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Type I and Type II Errors. In Exercises 29–32, provide statements that identify the type I error and the type II error that correspond to the given claim. (Although conclusions are usually expressed in verbal form, the answers here can be expressed with statements that include symbolic expressions such as p = 0.1.).

The proportion of people with blue eyes is equal to 0.35.

Interpreting Power For the sample data in Example 1 “Adult Sleep” from this section, Minitab and StatCrunch show that the hypothesis test has power of 0.4943 of supporting the claim that μ<7 hours of sleep when the actual population mean is 6.0 hours of sleep. Interpret this value of the power, then identify the value of βand interpret that value. (For the t test in this section, a “noncentrality parameter” makes calculations of power much more complicated than the process described in Section 8-1, so software is recommended for power calculations.)

In Exercises 1–4, use these results from a USA Today survey in which 510 people chose to respond to this question that was posted on the USA Today website: “Should Americans replace passwords with biometric security (fingerprints, etc)?” Among the respondents, 53% said “yes.” We want to test the claim that more than half of the population believes that passwords should be replaced with biometric security.

Requirements and Conclusions

a. Are any of the three requirements violated? Can the methods of this section be used to test the claim?

b. It was stated that we can easily remember how to interpret P-values with this: “If the P is low, the null must go.” What does this mean?

c. Another memory trick commonly used is this: “If the P is high, the null will fly.” Given that a hypothesis test never results in a conclusion of proving or supporting a null hypothesis, how is this memory trick misleading?

d. Common significance levels are 0.01 and 0.05. Why would it be unwise to use a significance level with a number like 0.0483?

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Postponing Death An interesting and popular hypothesis is that individuals can temporarily postpone death to survive a major holiday or important event such as a birthday. In a study, it was found that there were 6062 deaths in the week before Thanksgiving, and 5938 deaths the week after Thanksgiving (based on data from “Holidays, Birthdays, and Postponement of Cancer Death,” by Young and Hade, Journal of the American Medical Association, Vol. 292, No. 24). If people can postpone death until after Thanksgiving, then the proportion of deaths in the week before should be less than 0.5. Use a 0.05 significance level to test the claim that the proportion of deaths in the week before Thanksgiving is less than 0.5. Based on the result, does there appear to be any indication that people can temporarily postpone death to survive the Thanksgiving holiday?

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Got a Minute? Students of the author estimated the length of one minute without reference to a watch or clock, and the times (seconds) are listed below. Use a 0.05 significance level to test the claim that these times are from a population with a mean equal to 60 seconds. Does it appear that students are reasonably good at estimating one minute?

69 81 39 65 42 21 60 63 66 48 64 70 96 91 65

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free