Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

P-Values. In Exercises 17–20, do the following:

a. Identify the hypothesis test as being two-tailed, left-tailed, or right-tailed.

b. Find the P-value. (See Figure 8-3 on page 364.)

c. Using a significance level of α= 0.05, should we reject or should we fail to reject ?

The test statistic of z = 1.00 is obtained when testing the claim that p>0.3.

Short Answer

Expert verified

a. The test is right-tailed.

b. The p-value is equal to 0.1587.

c. The decision of the statistical test is to fail to rejectH0

Step by step solution

01

Given Information

A test statistic value of z=1.00 is obtained, and the claim to be tested is p>0.3.

02

Identify the hypotheses and tail of the test

a.

In correspondence with the given claim, the following hypotheses are set up:

Null Hypothesis: p=0.3

Alternative Hypothesis: p>0.3

Where p is the population proportion.

Since there is greater than sign in the alternative hypothesis, the test is right-tailed.

03

P-value

b.

The test statistic to test the given claim is the z-value.

The z-value is equal to 1.00.

Using the standard normal table, the corresponding right-tailed p-value for z-score equal to 1.00 is equal to:

Pz>1.00=1-Pz<1.00=1-0.8413=0.1587

Thus, the p-value is equal to 0.1587.

To depict the p-value on the normal probability graph, follow the given steps:

  • Plot a horizontal axis representing the z-score. Also label it as “z-score”.
  • Sketch a bell-shaped curve and draw a vertical dotted line corresponding to the value “0” on the horizontal axis
  • Mark the point “1” on the horizontal axis and then shade the area to the right of the value “1” with blue as shown in the figure.
  • Label the shaded region as “p-value = 0.1587”.

The following plot shows the probability value (p-value) as the shaded area under the normal probability graph:

04

Decision about the test

c.

If the p-value is less than the level of significance, the null hypothesis is rejected; otherwise, not.

Here, the level of significance is equal to 0.05, and the p-value is equal to 0.1587.

Since the p-value is greater than 0.05, so the decision is to fail to reject the null hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

OxyContin The drug OxyContin (oxycodone) is used to treat pain, but it is dangerous because it is addictive and can be lethal. In clinical trials, 227 subjects were treated with OxyContin and 52 of them developed nausea (based on data from Purdue Pharma L.P.). Use a 0.05 significance level to test the claim that more than 20% of OxyContin users develop nausea. Does the rate of nausea appear to be too high?

PowerFor a hypothesis test with a specified significance level , the probability of a type I error is, whereas the probability of a type II error depends on the particular value ofpthat is used as an alternative to the null hypothesis.

a.Using an alternative hypothesis ofp< 0.4, using a sample size ofn= 50, and assumingthat the true value ofpis 0.25, find the power of the test. See Exercise 34 “Calculating Power”in Section 8-1. [Hint:Use the valuesp= 0.25 andpq/n= (0.25)(0.75)/50.]

b.Find the value of , the probability of making a type II error.

c.Given the conditions cited in part (a), find the power of the test. What does the power tell us about the effectiveness of the test?

Identifying H0and H1. In Exercises 5–8, do the following:

a. Express the original claim in symbolic form.

b. Identify the null and alternative hypotheses.

Pulse Rates Claim: The standard deviation of pulse rates of adult males is more than 11 bpm. For the random sample of 153 adult males in Data Set 1 “Body Data” in Appendix B, the pulse rates have a standard deviation of 11.3 bpm.

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Earthquake Depths Data Set 21 “Earthquakes” in Appendix B lists earthquake depths, and the summary statistics are n = 600, x = 5.82 km, s = 4.93 km. Use a 0.01 significance level to test the claim of a seismologist that these earthquakes are from a population with a mean equal to 5.00 km.

Identifying H0and H1. In Exercises 5–8, do the following:

a. Express the original claim in symbolic form.

b. Identify the null and alternative hypotheses.

Pulse Rates Claim: The mean pulse rate (in beats per minute, or bpm) of adult males is equal to 69 bpm. For the random sample of 153 adult males in Data Set 1 “Body Data” in Appendix B, the mean pulse rate is 69.6 bpm and the standard deviation is 11.3 bpm.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free