Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Survey Return Rate In a study of cell phone use and brain hemispheric dominance, an Internet survey was e-mailed to 5000 subjects randomly selected from an online group involved with ears. 717 surveys were returned. Use a 0.01 significance level to test the claim that the return rate is less than 15%.

Short Answer

Expert verified

Nullhypothesis: The proportion of e-mails that were returned is equal to 15%.

Alternativehypothesis: The proportion of e-mails that were returned is less than 15%.

Teststatistic: -1.307

Criticalvalue: -2.3263

P-value: 0.0956

The null hypothesis is failed to reject.

There is not enough evidence to support the claim that the return rate of surveys is less than 15%.

Step by step solution

01

Given information

Out of 5000 e-mails distributed, 717 surveys were returned.

02

Hypotheses

The null hypothesis is written as follows:

The proportion of surveys that were returned equals15%.

H0:p=0.15

The alternative hypothesis is written as follows:

The proportion of surveys that were returned is less than 15%.

H1:p<0.15

The test is left-tailed.

03

Sample size, sample proportion, and population proportion

The sample size is n=5000.

The sample proportion of surveys that were returnedis as follows:

p^=7175000=0.143

The population proportion of surveys that were returned is 0.15.

04

Test statistic

The value of the test statistic is computed below:

z=p^-ppqn=0.143-0.150.151-0.155000=-1.307

Thus, z=-1.307.

05

Critical value and p-value

Referring to the standard normal table, the critical value of z at α=0.01 for a left-tailed test is -2.3263.

Referring to the standard normal table, the p-value for the test statistic value of-1.307 equals0.0956.

Since the p-value is greater than 0.05, the null hypothesis is failed to reject.

06

Conclusion of the test

There is not enough evidence to support the claim that the proportion of surveys that were returned is less than 0.15.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Cans of coke for the sample data from exercise 1, we get “P-value<0.01” when testing the claim that the new filling process results in volumes with the same standard deviation of 0.115 oz.

  1. What should we conclude about the null hypothesis?
  2. What should we conclude about the original claims?
  3. What do these results suggest about the new filling process?

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Mendelian Genetics When Mendel conducted his famous genetics experiments with peas, one sample of offspring consisted of 428 green peas and 152 yellow peas. Use a 0.01 significance level to test Mendel’s claim that under the same circumstances, 25% of offspring peas will be yellow. What can we conclude about Mendel’s claim?

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Is Nessie Real? This question was posted on the America Online website: Do you believe the Loch Ness monster exists? Among 21,346 responses, 64% were “yes.” Use a 0.01 significance level to test the claim that most people believe that the Loch Ness monster exists. How is the conclusion affected by the fact that Internet users who saw the question could decide whether to respond?

Using Technology. In Exercises 5–8, identify the indicated values or interpret the given display. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section. Use = 0.05 significance level and answer the following:

a. Is the test two-tailed, left-tailed, or right-tailed?

b. What is the test statistic?

c. What is the P-value?

d. What is the null hypothesis, and what do you conclude about it?

e. What is the final conclusion?

Biometric Security In a USA Today survey of 510 people, 53% said that we should replace passwords with biometric security, such as fingerprints. The accompanying Statdisk display results from a test of the claim that half of us say that we should replace passwords with biometric security.

In Exercises 13–16, refer to the exercise identified and find the value of the test statistic. (Refer to Table 8-2 on page 362 to select the correct expression for evaluating the test statistic.)

Exercise 6 “Cell Phone”

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free