Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Variation. In Exercises 5–16, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Assume that a simple random sample is selected from a normally distributed population.

Spoken Words Couples were recruited for a study of how many words people speak in a day. A random sample of 56 males resulted in a mean of 16,576 words and a standard deviation of 7871 words. Use a 0.01 significance level to test the claim that males have a standard deviation that is greater than the standard deviation of 7460 words for females (based on Data Set 24 “Word Counts”).

Short Answer

Expert verified

The hypotheses are as follows.

H0:σ=7460H1:σ>7460

The test statistic is 61.227.

The critical value is 82.292.

The null hypothesis is failed to be rejected.

There is not enough evidence to support the claim that the standard deviation of the males’ words is greater than that of the females’ words.

Step by step solution

01

Given information

The standard deviation of the words of 56 males is 7871.

The level of significance is 0.01.

The standard deviation for females is 7460.

02

Describe the hypothesis testing

For applying the hypothesis test, first, set up a null and an alternative hypothesis.

The null hypothesis is the statement about the value of a population parameter, which is equal to the claimed value. It is denoted by H0.

The alternate hypothesis is a statement that the parameter has a value opposite to the null hypothesis. It is denoted by H1.

03

State the null and alternative hypotheses

The claim states that males have a standard deviation of words greater than the standard deviation of 7460 words of females.

From the claim, the null and alternative hypotheses are as follows.

H0:σ=7460H1:σ>7460

Here, σis the standard deviation of the words of males.

04

Find the test statistic

To conduct a hypothesis test of a claim about a population standard deviation σ or population varianceσ2,the test statistic is as follows.

χ2=n-1×s2σ2=56-1×7871274602=61.227

Thus, the value of the test statistic is 61.227

05

Find the critical value

The test is right-tailed.

The critical value is computed as follows.

Pχ2>χα2=αPχ2>χ0.012=0.01

Referring to the chi-square table, for the critical value, the -ailed area 0.01 corresponding to a degree of freedom of 55, the value is 82.292.

06

 Step 6: Conclude the test result

The decision rule for the test is stated below.

If the test statistic is greater than the critical value, reject the null hypothesis at the given level of significance.

As the observed value χ2=61.227<χαn-12=82.291, the null hypothesis is failed to be rejected.

Thus, there is not enough evidence to support the claim that males have a standard deviation of words greater than the standard deviation of 7460 words of females.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Using Technology. In Exercises 5–8, identify the indicated values or interpret the given display. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section. Use α= 0.05 significance level and answer the following:

a. Is the test two-tailed, left-tailed, or right-tailed?

b. What is the test statistic?

c. What is the P-value?

d. What is the null hypothesis, and what do you conclude about it?

e. What is the final conclusion?

Adverse Reactions to Drug The drug Lipitor (atorvastatin) is used to treat high cholesterol. In a clinical trial of Lipitor, 47 of 863 treated subjects experienced headaches (based on data from Pfizer). The accompanying TI@83/84 Plus calculator display shows results from a test of the claim that fewer than 10% of treated subjects experience headaches.

Using Technology. In Exercises 5–8, identify the indicated values or interpret the given display. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section. Use α= 0.05 significance level and answer the following:

a. Is the test two-tailed, left-tailed, or right-tailed?

b. What is the test statistic?

c. What is the P-value?

d. What is the null hypothesis, and what do you conclude about it?

e. What is the final conclusion?

Cell Phone Ownership A Pew Research Center poll of 2076 randomly selected adults showed that 91% of them own cell phones. The following Minitab display results from a test of the claim that 92% of adults own cell phones.

Cans of coke use the data and the claim given in exercise 1 to identify the null and alternative hypothesis and the test statistic. What is the sampling distribution of the test statistic?

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Drug Screening The company Drug Test Success provides a “1-Panel-THC” test for marijuana usage. Among 300 tested subjects, results from 27 subjects were wrong (either a false positive or a false negative). Use a 0.05 significance level to test the claim that less than 10% of the test results are wrong. Does the test appear to be good for most purposes?

Confidence interval Assume that we will use the sample data from Exercise 1 “Video Games” with a 0.05 significance level in a test of the claim that the population mean is greater than 90 sec. If we want to construct a confidence interval to be used for testing the claim, what confidence level should be used for the confidence interval? If the confidence interval is found to be 21.1 sec < μ< 191.4 sec, what should we conclude about the claim?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free