Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

M&Ms Data Set 27 “M&M Weights” in Appendix B lists data from 100 M&Ms, and 27% of them are blue. The Mars candy company claims that the percentage of blue M&Ms is equal to 24%. Use a 0.05 significance level to test that claim. Should the Mars company take corrective action?

Short Answer

Expert verified

Nullhypothesis: The proportion of blue M&Ms is equal to 0.24.

Alternativehypothesis: The proportion of blue M&Ms is not equal to 0.24.

Teststatistic: 0.702

Criticalvalue: 1.96

P-value: 0.4827

The null hypothesis is failed to reject.

There is not enough evidence to reject the claim that the proportion of blue M&Ms is equal to 0.24.

Since the proportion of blue M&Ms is equal to 24% per the claim of the company, the company does not need to take any corrective measure.

Step by step solution

01

Given information

The proportion of blue M&Ms in a sample of 100 M&Ms is equal to 27%.

02

Hypotheses

The null hypothesis is written as follows:

The proportion of blue M&Ms is equal to 24%.

H0:p=0.24

The alternative hypothesis is written as follows:

The proportion of blue M&Ms is not equal to 24%.

H1:p0.24

The test is two-tailed.

03

Sample size, sample proportion, and population proportion

The sample size is equal to n=100.

The sample proportion of blue M&Ms isas follows:

p^=27%=27100=0.27

The population proportion of blue M&Ms is equal to 0.27.

04

Test statistic

The value of the test statistic is computed below:

z=p^-ppqn=0.27-0.240.241-0.24100=0.702

Thus, z=0.702.

05

Critical value and p-value

Referring to the standard normal distribution table, the critical value of z at α=0.05 for a two-tailed test is equal to 1.96.

Referring to the standard normal distribution table, the p-value for the test statistic value of 2.694 is equal to 0.4827.

Since the p-value is greater than 0.05, the null hypothesis is failed to reject.

06

Conclusion of the test

There is not enough evidence to reject the claim that the proportion of blue M&Ms is equal to 0.24.

Since the proportion of blue M&Ms is equal to 24% per the claim of the company, the company does not need to take any corrective measure.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Got a Minute? Students of the author estimated the length of one minute without reference to a watch or clock, and the times (seconds) are listed below. Use a 0.05 significance level to test the claim that these times are from a population with a mean equal to 60 seconds. Does it appear that students are reasonably good at estimating one minute?

69 81 39 65 42 21 60 63 66 48 64 70 96 91 65

Estimates and Hypothesis Tests Data Set 3 “Body Temperatures” in Appendix B includes sample body temperatures. We could use methods of Chapter 7 for making an estimate, or we could use those values to test the common belief that the mean body temperature is 98.6°F. What is the difference between estimating and hypothesis testing?

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Eliquis The drug Eliquis (apixaban) is used to help prevent blood clots in certain patients. In clinical trials, among 5924 patients treated with Eliquis, 153 developed the adverse reaction of nausea (based on data from Bristol-Myers Squibb Co.). Use a 0.05 significance level to test the claim that 3% of Eliquis users develop nausea. Does nausea appear to be a problematic adverse reaction?

Interpreting Power Chantix (varenicline) tablets are used as an aid to help people stop smoking. In a clinical trial, 129 subjects were treated with Chantix twice a day for 12 weeks, and 16 subjects experienced abdominal pain (based on data from Pfizer, Inc.). If someone claims that more than 8% of Chantix users experience abdominal pain, that claim is supported with a hypothesis test conducted with a 0.05 significance level. Using 0.18 as an alternative value of p, the power of the test is 0.96. Interpret this value of the power of the test.

Calculating Power Consider a hypothesis test of the claim that the Ericsson method of gender selection is effective in increasing the likelihood of having a baby girl, so that the claim is p>0.5. Assume that a significance level of α= 0.05 is used, and the sample is a simple random sample of size n = 64.

a. Assuming that the true population proportion is 0.65, find the power of the test, which is the probability of rejecting the null hypothesis when it is false. (Hint: With a 0.05 significance level, the critical value is z = 1.645, so any test statistic in the right tail of the accompanying top graph is in the rejection region where the claim is supported. Find the sample proportion in the top graph, and use it to find the power shown in the bottom graph.)

b. Explain why the green-shaded region of the bottom graph represents the power of the test.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free