Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Technology. In Exercises 9–12, test the given claim by using the display provided from technology. Use a 0.05 significance level. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Body Temperatures Data Set 3 “Body Temperatures” in Appendix B includes 93 body temperatures measured at 12 ²³ on day 1 of a study, and the accompanying XLSTAT display results from using those data to test the claim that the mean body temperature is equal to 98.6°F. Conduct the hypothesis test using these results.

Short Answer

Expert verified

The hypotheses are as follows.

H0:μ=98.6°FH1:μ98.6°F

The test statistic is -7.102.

The p-value is <0.0001.

The null hypothesis is rejected, and it is concluded that there is not sufficient evidence to support the claim that the population mean of the body temperatures is equal to .

Step by step solution

01

Given information

A sample is taken from body temperatures with a sample size of 93 with the claim that the population mean of the body temperature is equal to .

02

State the hypotheses

The null hypothesis H0represents the mean body temperature equal to 98.6 degree. Also, the alternate hypothesis H1represents the mean body temperature, which is not equal to 98.6 degree .

Let μbe the population mean of the body temperatures.

State the null and alternate hypotheses.

H0:μ=98.6°FH1:μ98.6°F

03

State the test statistic and the p-value from the summary given 

State the test statistic and the p-value obtained from the second row and the fourth row of the given output, respectively. The critical value can also be observed from the third row.

tobserved-7.102p - valueTwo-Tailed<0.0001tcritical1.986

04

State the decision

Reject the null hypothesis when the absolute value of the observed test statistics is greater than the critical value. Otherwise, fail to reject the null hypothesis.

In this case,

-7.102=7.102>1.986tobserved>tcritical.

The absolute value of the observed test statistic is significantly larger than the critical value. This implies that the null hypothesis is rejected.

05

Conclusion

As the null hypothesis is rejected, it can be concluded that there is insufficient evidence to support the claim that the population mean of the body temperature is equal to 98.6 degree.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Technology. In Exercises 9–12, test the given claim by using the display provided from technology. Use a 0.05 significance level. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Airport Data Speeds Data Set 32 “Airport Data Speeds” in Appendix B includes Sprint data speeds (mbps). The accompanying TI-83/84 Plus display results from using those data to test the claim that they are from a population having a mean less than 4.00 Mbps. Conduct the hypothesis test using these results.

Finding Critical t Values When finding critical values, we often need significance levels other than those available in Table A-3. Some computer programs approximate critical t values by calculating t=df×eA2/df-1where df = n-1, e = 2.718, A=z8×df+3/8×df+1, and z is the critical z score. Use this approximation to find the critical t score for Exercise 12 “Tornadoes,” using a significance level of 0.05. Compare the results to the critical t score of 1.648 found from technology. Does this approximation appear to work reasonably well?

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Medication Usage In a survey of 3005 adults aged 57 through 85 years, it was found that 87.1% of them used at least one prescription medication (based on data from “Use of Prescription Over-the-Counter Medications and Dietary SupplementsAmong Older Adultsin the United States,” by Qato et al., Journal of the American Medical Association,Vol. 300,No. 24). Use a 0.01 significance level to test the claim that more than 3/4 of adults use at least one prescription medication. Does the rate of prescription use among adults appear to be high?

Test Statistics. In Exercises 13–16, refer to the exercise identified and find the value of the test statistic. (Refer to Table 8-2 on page 362 to select the correct expression for evaluating the test statistic.)

Exercise 7 “Pulse Rates”

Final Conclusions. In Exercises 25–28, use a significance level of α= 0.05 and use the given information for the following:

a. State a conclusion about the null hypothesis. (Reject H0 or fail to reject H0.)

b. Without using technical terms or symbols, state a final conclusion that addresses the original claim.

Original claim: The mean pulse rate (in beats per minute) of adult males is 72 bpm. The hypothesis test results in a P-value of 0.0095.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free