Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

We have been provided a scenario for a hypothesis test for a population mean. Decide whether the z-test is an appropriate method for conducting the hypothesis test. Assume that the population standard deviation is known in the given case.

Preliminary data analyses reveal that the sample data contain no outliers but that the distribution of the variable under consideration is probably highly skewed. The sample size is70.

Short Answer

Expert verified

The use of the z-test is appropriate.

Step by step solution

01

Step 1. Given information.

Consider the given question,

The sample size is 70.

02

Step 2. Consider the given size.

Assume that the population standard deviation is known.

To decide whether the z-test can be used for conducting the hypothesis test or not, we need to take care of the following conditions,

In case the sample size isn<15, then the z-test procedure can be used when the variable is very close to being normally distributed or normally distributed.

If the sample size is between15<n<30, then the z-test procedure can be used when there is no outlier in the data or the variable is far from being normally distributed.

If the sample size is greater than 30<n, then the z-test procedure can be used without any limitation.

Here, the given sample size is large. This means, the sample size large.

The distribution of the variable under consideration is also mildly skewed and there is no outliers.

Therefore, the z-test is an appropriate method for conducting the hypothesis test as the data set is large.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 9โ€“32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Touch Therapy When she was 9 years of age, Emily Rosa did a science fair experiment in which she tested professional touch therapists to see if they could sense her energy field. She flipped a coin to select either her right hand or her left hand, and then she asked the therapists to identify the selected hand by placing their hand just under Emilyโ€™s hand without seeing it and without touching it. Among 280 trials, the touch therapists were correct 123 times (based on data in โ€œA Close Look at Therapeutic Touch,โ€ Journal of the American Medical Association, Vol. 279, No. 13). Use a 0.10 significance level to test the claim that touch therapists use a method equivalent to random guesses. Do the results suggest that touch therapists are effective?

Technology. In Exercises 9โ€“12, test the given claim by using the display provided from technology. Use a 0.05 significance level. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Airport Data Speeds Data Set 32 โ€œAirport Data Speedsโ€ in Appendix B includes Sprint data speeds (mbps). The accompanying TI-83/84 Plus display results from using those data to test the claim that they are from a population having a mean less than 4.00 Mbps. Conduct the hypothesis test using these results.

Testing Hypotheses. In Exercises 13โ€“24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Cans of Coke Data Set 26 โ€œCola Weights and Volumesโ€ in Appendix B includes volumes (ounces) of a sample of cans of regular Coke. The summary statistics are n = 36, x = 12.19 oz, s = 0.11 oz. Use a 0.05 significance level to test the claim that cans of Coke have a mean volume of 12.00 ounces. Does it appear that consumers are being cheated?

Testing Claims About Proportions. In Exercises 9โ€“32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Eliquis The drug Eliquis (apixaban) is used to help prevent blood clots in certain patients. In clinical trials, among 5924 patients treated with Eliquis, 153 developed the adverse reaction of nausea (based on data from Bristol-Myers Squibb Co.). Use a 0.05 significance level to test the claim that 3% of Eliquis users develop nausea. Does nausea appear to be a problematic adverse reaction?

Critical Values. In Exercises 21โ€“24, refer to the information in the given exercise and do the following.

a. Find the critical value(s).

b. Using a significance level of ฮฑ= 0.05, should we reject H0or should we fail to reject H0?

Exercise 19

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free