Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

We have been provided a scenario for a hypothesis test for a population mean. Decide whether the z-test is an appropriate method for conducting the hypothesis test. Assume that the population standard deviation is known in the given case.

A normal probability plot of the sample data shows no outliers and is quite linear. The sample size is 12.

Short Answer

Expert verified

The use of the z-test is appropriate.

Step by step solution

01

Step 1. Given information.

Consider the given question,

The sample size is12.

02

Step 2. Consider the given size.

First, we need to make sure that the z-test procedure is suitable for the given sample size. To use the z-test, we need to take care of the following conditions,

In case the sample size isn<15, then the z-test procedure can be used when the variable is very close to being normally distributed or normally distributed.

If the sample size is between15<n<30, then the z-test procedure can be used when there is no outlier in the data or the variable is far from being normally distributed.

If the sample size is greater than 30<n, then the z-test procedure can be used without any limitation.

Here, the given sample size is small. This means, the sample size nis 12<30.

As the variable is very close to being normally distributed or normally distributed.

Hence, the use of the z-test is appropriate.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 9โ€“32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Eliquis The drug Eliquis (apixaban) is used to help prevent blood clots in certain patients. In clinical trials, among 5924 patients treated with Eliquis, 153 developed the adverse reaction of nausea (based on data from Bristol-Myers Squibb Co.). Use a 0.05 significance level to test the claim that 3% of Eliquis users develop nausea. Does nausea appear to be a problematic adverse reaction?

Testing Hypotheses. In Exercises 13โ€“24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Cans of Coke Data Set 26 โ€œCola Weights and Volumesโ€ in Appendix B includes volumes (ounces) of a sample of cans of regular Coke. The summary statistics are n = 36, x = 12.19 oz, s = 0.11 oz. Use a 0.05 significance level to test the claim that cans of Coke have a mean volume of 12.00 ounces. Does it appear that consumers are being cheated?

Testing Claims About Proportions. In Exercises 9โ€“32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Touch Therapy Repeat the preceding exercise using a 0.01 significance level. Does the conclusion change?

Testing Claims About Proportions. In Exercises 9โ€“32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Store Checkout-Scanner Accuracy In a study of store checkout-scanners, 1234 items were checked for pricing accuracy; 20 checked items were found to be overcharges, and 1214 checked items were not overcharges (based on data from โ€œUPC Scanner Pricing Systems: Are They Accurate?โ€ by Goodstein, Journal of Marketing, Vol. 58). Use a 0.05 significance level to test the claim that with scanners, 1% of sales are overcharges. (Before scanners were used, the overcharge rate was estimated to be about 1%.) Based on these results, do scanners appear to help consumers avoid overcharges?

In Exercises 1โ€“4, use these results from a USA Today survey in which 510 people chose to respond to this question that was posted on the USA Today website: โ€œShould Americans replace passwords with biometric security (fingerprints, etc)?โ€ Among the respondents, 53% said โ€œyes.โ€ We want to test the claim that more than half of the population believes that passwords should be replaced with biometric security.

Equivalence of Methods If we use the same significance level to conduct the hypothesis test using the P-value method, the critical value method, and a confidence interval, which method is not equivalent to the other two?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free