Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine the sufficient evidence to reject the null hypothesis in favor of alternative hypothesis.

(a) z= 1.24 (b) z= -0.69

Short Answer

Expert verified

(a) The P-value is 0.107488

(b) The P-value is 0.754903

Step by step solution

01

Step 1. Given

(a) z= 1.24 (b) z= -0.69

02

Part(a) Step 2. Calculation

Since the given hypothesis test is a Right -tailed test, the P-value is given by

P-value=P(zz0),wherez~N(0,1)=P(z-1.24)=1-P(z<-1.24)=1-0.8925120.107488

03

Part(b) Step 3. Calculation

Since the given hypothesis test is a Right -tailed test, the P-value is given by

P-value=P(zz0),wherez~N(0,1)=P(z-0.69)=1-P(z<-0.69)=1-0.245097=0.759473

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

M&Ms Data Set 27 “M&M Weights” in Appendix B lists data from 100 M&Ms, and 27% of them are blue. The Mars candy company claims that the percentage of blue M&Ms is equal to 24%. Use a 0.05 significance level to test that claim. Should the Mars company take corrective action?

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Medical Malpractice In a study of 1228 randomly selected medical malpractice lawsuits, it was found that 856 of them were dropped or dismissed (based on data from the Physicians Insurers Association of America). Use a 0.01 significance level to test the claim that most medical malpractice lawsuits are dropped or dismissed. Should this be comforting to physicians?

Using Confidence Intervals to Test Hypotheseswhen analyzing the last digits of telephone numbers in Port Jefferson, it is found that among 1000 randomly selected digits, 119 are zeros. If the digits are randomly selected, the proportion of zeros should be 0.1.

a.Use the critical value method with a 0.05 significance level to test the claim that the proportion of zeros equals 0.1.

b.Use the P-value method with a 0.05 significance level to test the claim that the proportion of zeros equals 0.1.

c.Use the sample data to construct a 95% confidence interval estimate of the proportion of zeros. What does the confidence interval suggest about the claim that the proportion of zeros equals 0.1?

d.Compare the results from the critical value method, the P-value method, and the confidence interval method. Do they all lead to the same conclusion?

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Heights of Supermodels Listed below are the heights (cm) for the simple random sample of female supermodels Lima, Bundchen, Ambrosio, Ebanks, Iman, Rubik, Kurkova, Kerr,Kroes, Swanepoel, Prinsloo, Hosk, Kloss, Robinson, Heatherton, and Refaeli. Use a 0.01 significance level to test the claim that supermodels have heights with a mean that is greater than the mean height of 162 cm for women in the general population. Given that there are only 16 heights represented, can we really conclude that supermodels are taller than the typical woman?

178 177 176 174 175 178 175 178 178 177 180 176 180 178 180 176

Final Conclusions. In Exercises 25–28, use a significance level of α = 0.05 and use the given information for the following:

a. State a conclusion about the null hypothesis. (Reject H0or fail to reject H0.)

b. Without using technical terms or symbols, state a final conclusion that addresses the original claim.

Original claim: The standard deviation of pulse rates of adult males is more than 11 bpm. The hypothesis test results in a P-value of 0.3045.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free