Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

We have given the P-value for a hypothesis test. For each exercise determine the strength of the evidence against null hypothesis.

Given

P-valueis0.001

Short Answer

Expert verified

The P-value here is 0.001, which is less than 0.01.

The null hypothesis is obviously strongly rejected as a result of the conditions.

Step by step solution

01

Step 1. Given

The given value ofP-valueis0.001.

02

Step 2. Conditions for evaluating strength of the evidence 

Criteria for testing the strength of evidence from P values:

-0.10<P-value,weak or no evidence to contradict the null hypothesis.

-0.05<P-value0.10, moderate evidence contradict the null hypothesis.

-0.01<P-value<0.05,strong evidence contradict the null hypothesis.

-P-value<0.01,the strongest evidence contradict the null hypothesis.

03

Step 3. Conclusion 

The P-value here is 0.001, which is less than 0.01.

That is,P-value(=0.001)<0.01.

The null hypothesis is obviously strongly rejected as a result of the conditions.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1–4, use these results from a USA Today survey in which 510 people chose to respond to this question that was posted on the USA Today website: “Should Americans replace passwords with biometric security (fingerprints, etc)?” Among the respondents, 53% said “yes.” We want to test the claim that more than half of the population believes that passwords should be replaced with biometric security.

Null and Alternative Hypotheses Identify the null hypothesis and alternative hypothesis.

Estimates and Hypothesis Tests Data Set 3 “Body Temperatures” in Appendix B includes sample body temperatures. We could use methods of Chapter 7 for making an estimate, or we could use those values to test the common belief that the mean body temperature is 98.6°F. What is the difference between estimating and hypothesis testing?

Confidence interval Assume that we will use the sample data from Exercise 1 “Video Games” with a 0.05 significance level in a test of the claim that the population mean is greater than 90 sec. If we want to construct a confidence interval to be used for testing the claim, what confidence level should be used for the confidence interval? If the confidence interval is found to be 21.1 sec < μ< 191.4 sec, what should we conclude about the claim?

P-Values. In Exercises 17–20, do the following:

a. Identify the hypothesis test as being two-tailed, left-tailed, or right-tailed.

b. Find the P-value. (See Figure 8-3 on page 364.)

c. Using a significance level of α = 0.05, should we reject H0or should we fail to reject H0?

The test statistic of z = -2.50 is obtained when testing the claim that p<0.75

Finding Critical t Values When finding critical values, we often need significance levels other than those available in Table A-3. Some computer programs approximate critical t values by calculating t=df×eA2/df-1where df = n-1, e = 2.718, A=z8×df+3/8×df+1, and z is the critical z score. Use this approximation to find the critical t score for Exercise 12 “Tornadoes,” using a significance level of 0.05. Compare the results to the critical t score of 1.648 found from technology. Does this approximation appear to work reasonably well?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free