Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

We have given the P-value for a hypothesis test. For each exercise determine the strength of the evidence against null hypothesis.

Given P-valueis0.004.

Short Answer

Expert verified

The P-value is 0.004, which is lower than the 0.01 threshold.

The null hypothesis is obviously strongly rejected as a result of the conditions.

Step by step solution

01

Step 1. Given

The givenP-valueis0.004.

02

Step 2. Conditions for evaluating strength of the evidence 

Criteria for testing the strength of evidence from P values:

-0.10<P-value,weak or no evidence to contradict the null hypothesis.

-0.05<P-value0.10,moderate evidence contradict the null hypothesis.

-0.01<P-value<0.05,strong evidence contradict the null hypothesis.

-P-value<0.01,the strongest evidence contradict the null hypothesis.

03

Conclusion

The P-value is 0.004, which is lower than the 0.01 threshold.

That is, P-value(=0.004)<0.01.

The null hypothesis is obviously strongly rejected as a result of the conditions.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Type I and Type II Errors. In Exercises 29–32, provide statements that identify the type I error and the type II error that correspond to the given claim. (Although conclusions are usually expressed in verbal form, the answers here can be expressed with statements that include symbolic expressions such as p = 0.1.).

The proportion of people with blue eyes is equal to 0.35.

In Exercises 1–4, use these results from a USA Today survey in which 510 people chose to respond to this question that was posted on the USA Today website: “Should Americans replace passwords with biometric security (fingerprints, etc)?” Among the respondents, 53% said “yes.” We want to test the claim that more than half of the population believes that passwords should be replaced with biometric security.

Null and Alternative Hypotheses Identify the null hypothesis and alternative hypothesis.

In Exercises 1–4, use these results from a USA Today survey in which 510 people chose to respond to this question that was posted on the USA Today website: “Should Americans replace passwords with biometric security (fingerprints, etc)?” Among the respondents, 53% said “yes.” We want to test the claim that more than half of the population believes that passwords should be replaced with biometric security.

Equivalence of Methods If we use the same significance level to conduct the hypothesis test using the P-value method, the critical value method, and a confidence interval, which method is not equivalent to the other two?

Finding P-values. In Exercises 5–8, either use technology to find the P-value or use Table A-3 to find a range of values for the P-value.

8. Tornadoes. The claim is that for the widths (yd) of tornadoes, the mean is μ<140 yd. The sample size is n = 21 and the test statistic is t = -0.024.

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

How Many English Words? A simple random sample of 10 pages from Merriam-Webster’s Collegiate Dictionary is obtained. The numbers of words defined on those pages are found, with these results: n = 10, x = 53.3 words, s = 15.7 words. Given that this dictionary has 1459 pages with defined words, the claim that there are more than 70,000 defined words is equivalent to the claim that the mean number of words per page is greater than 48.0 words. Assume a normally distributed population. Use a 0.01 significance level to test the claim that the mean number of words per page is greater than 48.0 words. What does the result suggest about the claim that there are more than 70,000 defined words?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free