Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

We have given the P-value for a hypothesis test. For each exercise determine the strength of the evidence against null hypothesis.

GivenP-value=0.06

Short Answer

Expert verified

The P-value is 0.06, which is in the range of 0.05 to 0.10.

Thus null hypothesis is strongly rejected.

Step by step solution

01

Step 1. Given

The givenP-value=0.06.

02

Step 2. Conditions for evaluating strength of the evidence 

Criteria for testing the strength of evidence from P values:

0.10<P-value,weak or no evidence to contradict the null hypothesis.

0.05<P-value0.10,intermediate evidence contradict the null hypothesis.

0.01<P-value<0.05,strong evidence contradict the null hypothesis.

P-value0.01,the strongest evidence contradict the null hypothesis.

03

Conclusion

The P-value is 0.06, which is in the range of 0.05 to 0.10.

That is, 0.05<P-value(0.06)0.10.

The null hypothesis is heavily discounted.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Critical Values. In Exercises 21–24, refer to the information in the given exercise and do the following.

a. Find the critical value(s).

b. Using a significance level of α= 0.05, should we reject H0or should we fail to reject H0?

Exercise 19

Finding P-values. In Exercises 5–8, either use technology to find the P-value or use Table A-3 to find a range of values for the P-value.

Airport Data Speeds: The claim that for Verizon data speeds at airports, the mean. The sample size is and the test statistic is

t =-1.625 .

Final Conclusions. In Exercises 25–28, use a significance level of α = 0.05 and use the given information for the following:

a. State a conclusion about the null hypothesis. (Reject H0or fail to reject H0.)

b. Without using technical terms or symbols, state a final conclusion that addresses the original claim.

Original claim: The standard deviation of pulse rates of adult males is more than 11 bpm. The hypothesis test results in a P-value of 0.3045.

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Heights of Supermodels Listed below are the heights (cm) for the simple random sample of female supermodels Lima, Bundchen, Ambrosio, Ebanks, Iman, Rubik, Kurkova, Kerr,Kroes, Swanepoel, Prinsloo, Hosk, Kloss, Robinson, Heatherton, and Refaeli. Use a 0.01 significance level to test the claim that supermodels have heights with a mean that is greater than the mean height of 162 cm for women in the general population. Given that there are only 16 heights represented, can we really conclude that supermodels are taller than the typical woman?

178 177 176 174 175 178 175 178 178 177 180 176 180 178 180 176

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Is Nessie Real? This question was posted on the America Online website: Do you believe the Loch Ness monster exists? Among 21,346 responses, 64% were “yes.” Use a 0.01 significance level to test the claim that most people believe that the Loch Ness monster exists. How is the conclusion affected by the fact that Internet users who saw the question could decide whether to respond?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free