Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The P-value for a hypothesis test is 0.06. For each of the following significance levels, decide whether the null hypothesis should be rejected.

a. α=0.05

b. α=0.10

c.α=0.06

Short Answer

Expert verified

For given value of P=0.06, null hypothesis should be as follows :-

(a) α=0.05:- Not rejected

(b) α=0.10:- Rejected

(c) α=0.06:- Rejected

Step by step solution

01

Part (a) Step 1. Given information

Value ofα=0.05

02

Part (a) Step 2. Explanation

Here null hypothesis should not be rejected because P=0.06>α=0.05

03

Part (b) Step 1. Given information

Value ofα=0.10

04

Part (b) Step 2. Explanation

Here null hypothesis should be rejected becauseP=0.06<α=0.10

05

Part (c) Step 1. Given information

Value ofα=0.06

06

Part (c) Step 2. Explanation

Here null hypothesis should be rejected becauseP=0.06=α.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

df If we are using the sample data from Exercise 1 for a t-test of the claim that the population mean is greater than 90sec, What does df denote, and what is its value?

In Exercises 9–12, refer to the exercise identified. Make subjective estimates to decide whether results are significantly low or significantly high, then state a conclusion about the original claim. For example, if the claim is that a coin favours heads and sample results consist of 11 heads in 20 flips, conclude that there is not sufficient evidence to support the claim that the coin favours heads (because it is easy to get 11 heads in 20 flips by chance with a fair coin).

Exercise 5 “Online Data”

Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.

Heights of Supermodels Listed below are the heights (cm) for the simple random sample of female supermodels Lima, Bundchen, Ambrosio, Ebanks, Iman, Rubik, Kurkova, Kerr,Kroes, Swanepoel, Prinsloo, Hosk, Kloss, Robinson, Heatherton, and Refaeli. Use a 0.01 significance level to test the claim that supermodels have heights with a mean that is greater than the mean height of 162 cm for women in the general population. Given that there are only 16 heights represented, can we really conclude that supermodels are taller than the typical woman?

178 177 176 174 175 178 175 178 178 177 180 176 180 178 180 176

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Tennis Instant Replay The Hawk-Eye electronic system is used in tennis for displaying an instant replay that shows whether a ball is in bounds or out of bounds so players can challenge calls made by referees. In a recent U.S. Open, singles players made 879 challenges and 231 of them were successful, with the call overturned. Use a 0.01 significance level to test the claim that fewer than 1/ 3 of the challenges are successful. What do the results suggest about the ability of players to see calls better than referees?

Using Confidence Intervals to Test Hypotheseswhen analyzing the last digits of telephone numbers in Port Jefferson, it is found that among 1000 randomly selected digits, 119 are zeros. If the digits are randomly selected, the proportion of zeros should be 0.1.

a.Use the critical value method with a 0.05 significance level to test the claim that the proportion of zeros equals 0.1.

b.Use the P-value method with a 0.05 significance level to test the claim that the proportion of zeros equals 0.1.

c.Use the sample data to construct a 95% confidence interval estimate of the proportion of zeros. What does the confidence interval suggest about the claim that the proportion of zeros equals 0.1?

d.Compare the results from the critical value method, the P-value method, and the confidence interval method. Do they all lead to the same conclusion?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free