Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

This exercise contain graphs portraying the decision criterion for a one-mean 2-test. The curve in each graph is the normal curve for the test statistic under the assumption that the null hypothesis is true. For each exercise, determine the

a. rejection region.

c. critical value(s).

b. nonrejection region.

d. significance level.

e. Construct a graph similar to that in Fig. 9.3 on page 361 that depicts your results from parts (a)-(d).

f. Identify the hypothesis test as two tailed, left tailed or right tailed.

Short Answer

Expert verified

(a) The rejection region is z>1.645.

(b) The non rejection region is z ≤1.645.

(c)For the given graph, z=1.645 is the value which separates critical and non critical regions.

(d) The significance level is 0.05.

(e)

(f) As there is only one critical region towards right , the corresponding test is right -test failed.

Step by step solution

01

Step 1. Given

The curve in each graph is the normal curve for the test statistic under the assumption that the null hypothesis is true.

02

Part(a) Step 2. Determine the rejection region

The rejection region for the above graph is the set of values of z which are greater than 1.645. That is, the rejection region is z>1.645.

03

Part (b) Step 3.  Determine the non-rejection region 

The non-rejection region for the above graph is the set of values of z which are less than 1.645. That is, the non rejection region is z ≤1.645.

04

Part(c) Step 4. Determine the critical values.

The critical value is the value of test statistic that separate the rejection and non rejection regions. For the given graph, z=1.645 is the value which separates critical and non critical regions.

05

Part( d) Step 5. Determine the significance level

The size of critical region is known as significance level. For the given graph, the size of critical region is 0.05.

Hence, the significance level is 0.05.

06

Part(e) Step 6. Construct a graph similar to that in Fig. 9.3 on page 361 that depicts your results from parts (a)-(d). 

The graph that depicts critical region, non critical region and critical value is shown below:

07

Part (f) Step 7. Identify the hypothesis test as two tailed, left tailed or right tailed.

As there is only one critical region towards right , the corresponding test is right -test failed.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Estimates and Hypothesis Tests Data Set 3 “Body Temperatures” in Appendix B includes sample body temperatures. We could use methods of Chapter 7 for making an estimate, or we could use those values to test the common belief that the mean body temperature is 98.6°F. What is the difference between estimating and hypothesis testing?

Identifying H0 and H1 . In Exercises 5–8, do the following:

a. Express the original claim in symbolic form.

b. Identify the null and alternative hypotheses.

Online Data Claim: Most adults would erase all of their personal information online if they could. A GFI Software survey of 565 randomly selected adults showed that 59% of them would erase all of their personal information online if they could.

Critical Values. In Exercises 21–24, refer to the information in the given exercise and do the following.

a. Find the critical value(s).

b. Using a significance level of = 0.05, should we reject H0or should we fail to reject H0?

Exercise 17

Using Technology. In Exercises 5–8, identify the indicated values or interpret the given display. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section. Use = 0.05 significance level and answer the following:

a. Is the test two-tailed, left-tailed, or right-tailed?

b. What is the test statistic?

c. What is the P-value?

d. What is the null hypothesis, and what do you conclude about it?

e. What is the final conclusion?

Biometric Security In a USA Today survey of 510 people, 53% said that we should replace passwords with biometric security, such as fingerprints. The accompanying Statdisk display results from a test of the claim that half of us say that we should replace passwords with biometric security.

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Testing Effectiveness of Nicotine Patches In one study of smokers who tried to quit smoking with nicotine patch therapy, 39 were smoking one year after the treatment and 32 were not smoking one year after the treatment (based on data from “High-Dose Nicotine Patch Therapy,” by Dale et al., Journal of the American Medical Association, Vol. 274, No. 17). Use a 0.05 significance level to test the claim that among smokers who try to quit with nicotine patch therapy, the majority are smoking one year after the treatment. Do these results suggest that the nicotine patch therapy is not effective?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free