Chapter 8: Q, 9 (page 392)
Suppose that you want to conduct a left-handed hypothesis test at significance level. How much the critical value be chosen?
Short Answer
The critical value to be chosen is .
Chapter 8: Q, 9 (page 392)
Suppose that you want to conduct a left-handed hypothesis test at significance level. How much the critical value be chosen?
The critical value to be chosen is .
All the tools & learning materials you need for study success - in one app.
Get started for freeTechnology. In Exercises 9–12, test the given claim by using the display provided from technology. Use a 0.05 significance level. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.
Tornadoes Data Set 22 “Tornadoes” in Appendix B includes data from 500 random tornadoes. The accompanying StatCrunch display results from using the tornado lengths (miles) to test the claim that the mean tornado length is greater than 2.5 miles.
Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.
Births A random sample of 860 births in New York State included 426 boys. Use a 0.05 significance level to test the claim that 51.2% of newborn babies are boys. Do the results support the belief that 51.2% of newborn babies are boys?
Finding Critical t Values When finding critical values, we often need significance levels other than those available in Table A-3. Some computer programs approximate critical t values by calculating where df = n-1, e = 2.718, , and z is the critical z score. Use this approximation to find the critical t score for Exercise 12 “Tornadoes,” using a significance level of 0.05. Compare the results to the critical t score of 1.648 found from technology. Does this approximation appear to work reasonably well?
Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been selected and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.
Earthquake Depths Data Set 21 “Earthquakes” in Appendix B lists earthquake depths, and the summary statistics are n = 600, x = 5.82 km, s = 4.93 km. Use a 0.01 significance level to test the claim of a seismologist that these earthquakes are from a population with a mean equal to 5.00 km.
Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.
Lie Detectors Trials in an experiment with a polygraph yield 98 results that include 24 cases of wrong results and 74 cases of correct results (based on data from experiments conducted by researchers Charles R. Honts of Boise State University and Gordon H. Barland of the Department of Defense Polygraph Institute). Use a 0.05 significance level to test the claim that such polygraph results are correct less than 80% of the time. Based on the results, should polygraph test results be prohibited as evidence in trials?
What do you think about this solution?
We value your feedback to improve our textbook solutions.