Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Confidence interval Assume that we will use the sample data from Exercise 1 “Video Games” with a 0.05 significance level in a test of the claim that the population mean is greater than 90 sec. If we want to construct a confidence interval to be used for testing the claim, what confidence level should be used for the confidence interval? If the confidence interval is found to be 21.1 sec < μ< 191.4 sec, what should we conclude about the claim?

Short Answer

Expert verified

The 90% confidence interval should be used to test the claim at a 0.05 level of significance.

It can be concluded that there is insufficient evidence to support the claim that the population mean is greater than 90 seconds.

Step by step solution

01

Given information

Refer to Exercise 1 for the duration times of alcohol use for 12 different video games. The claim tested at the 0.05 level of significance indicates that the population mean is greater than 90 sec.

The confidence interval is 21.1sec<μ<191.4sec.

02

State the hypotheses

For true population mean μ, the hypotheses are formulated as follows:

H0:μ=90sec(nullhypothesis)H1:μ>90sec(alternativehypothesisandoriginalclaim)

Hence, this is a right-tailed test or a one-tailed test.

03

Determine the confidence level

The relationship between significance level and confidence level is stated below.



Confidence level



Two-tailed test

One-tailed test

Significance level

0.01

99%

98%

0.05

95%

90%

0.10

90%

80%

For a one-tailed test with a significance level α=0.05, a 90% confidence interval would be used.

04

State the decision using confidence interval

The 90% confidence interval is 21.1 sec to 191.4 sec.

The hypothesized value of 90 sec lies within the confidence interval. Thus, there is insufficient evidence to reject the null hypothesis.

Thus, it is concluded that we fail to reject the null hypothesis.

Therefore, it is concluded that there is insufficient evidence to support the claim that the population mean is greater than 90 seconds.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Estimates and Hypothesis Tests Data Set 3 “Body Temperatures” in Appendix B includes sample body temperatures. We could use methods of Chapter 7 for making an estimate, or we could use those values to test the common belief that the mean body temperature is 98.6°F. What is the difference between estimating and hypothesis testing?

Using Confidence Intervals to Test Hypotheseswhen analyzing the last digits of telephone numbers in Port Jefferson, it is found that among 1000 randomly selected digits, 119 are zeros. If the digits are randomly selected, the proportion of zeros should be 0.1.

a.Use the critical value method with a 0.05 significance level to test the claim that the proportion of zeros equals 0.1.

b.Use the P-value method with a 0.05 significance level to test the claim that the proportion of zeros equals 0.1.

c.Use the sample data to construct a 95% confidence interval estimate of the proportion of zeros. What does the confidence interval suggest about the claim that the proportion of zeros equals 0.1?

d.Compare the results from the critical value method, the P-value method, and the confidence interval method. Do they all lead to the same conclusion?

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Touch Therapy When she was 9 years of age, Emily Rosa did a science fair experiment in which she tested professional touch therapists to see if they could sense her energy field. She flipped a coin to select either her right hand or her left hand, and then she asked the therapists to identify the selected hand by placing their hand just under Emily’s hand without seeing it and without touching it. Among 280 trials, the touch therapists were correct 123 times (based on data in “A Close Look at Therapeutic Touch,” Journal of the American Medical Association, Vol. 279, No. 13). Use a 0.10 significance level to test the claim that touch therapists use a method equivalent to random guesses. Do the results suggest that touch therapists are effective?

Cans of coke use the data and the claim given in exercise 1 to identify the null and alternative hypothesis and the test statistic. What is the sampling distribution of the test statistic?

Calculating Power Consider a hypothesis test of the claim that the Ericsson method of gender selection is effective in increasing the likelihood of having a baby girl, so that the claim is p>0.5. Assume that a significance level of α= 0.05 is used, and the sample is a simple random sample of size n = 64.

a. Assuming that the true population proportion is 0.65, find the power of the test, which is the probability of rejecting the null hypothesis when it is false. (Hint: With a 0.05 significance level, the critical value is z = 1.645, so any test statistic in the right tail of the accompanying top graph is in the rejection region where the claim is supported. Find the sample proportion in the top graph, and use it to find the power shown in the bottom graph.)

b. Explain why the green-shaded region of the bottom graph represents the power of the test.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free