Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In each part, we have identified a hypothesis-testing procedure for one population mean. State the assumptions required and the test statistic used in each case.
a. one-meant-test b.one-meanz-test

Short Answer

Expert verified

t-test procedure can be used only on small sample size, whereas z-test procedure can be used on small, moderate and large sample sizes.

Step by step solution

01

Step 1. Given Information

Test statistic used in
a. one-mean t-test
b. one-mean z-test

02

Step 2. Conditions to use a.one-mean t-test

The procedure is for:
Small sample size

  • Samples are randomly selected.
  • Population follows normal distribution or the sample size is larger.
  • The standard deviation is unknown.

The test statistic for one-mean t-test is given below:

t=x¯-μ0sn

03

Step 3. Conditions to use b. one-mean z-test

The procedure is for:
Small sample size:
If the sample size is say less than 15, thez-test procedure is used when the variable is normally distributed or very close to being normally distributed.
Moderate sample size:
If the sample size lies between 15-30, thez-test procedure is used when the variable is far from being normally distributed or there is no outlier in the data.
Large sample size:
If the sample size is say greater than 30, thez-test procedure is used without any restriction.
The test statistic for one-meanz-test is given below:
z=x¯-μ0σn

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Testing Effectiveness of Nicotine Patches In one study of smokers who tried to quit smoking with nicotine patch therapy, 39 were smoking one year after the treatment and 32 were not smoking one year after the treatment (based on data from “High-Dose Nicotine Patch Therapy,” by Dale et al., Journal of the American Medical Association, Vol. 274, No. 17). Use a 0.05 significance level to test the claim that among smokers who try to quit with nicotine patch therapy, the majority are smoking one year after the treatment. Do these results suggest that the nicotine patch therapy is not effective?

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

M&Ms Data Set 27 “M&M Weights” in Appendix B lists data from 100 M&Ms, and 27% of them are blue. The Mars candy company claims that the percentage of blue M&Ms is equal to 24%. Use a 0.05 significance level to test that claim. Should the Mars company take corrective action?

Finding P-values. In Exercises 5–8, either use technology to find the P-value or use Table A-3 to find a range of values for the P-value.

8. Tornadoes. The claim is that for the widths (yd) of tornadoes, the mean is μ<140 yd. The sample size is n = 21 and the test statistic is t = -0.024.

Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.

Survey Return Rate In a study of cell phone use and brain hemispheric dominance, an Internet survey was e-mailed to 5000 subjects randomly selected from an online group involved with ears. 717 surveys were returned. Use a 0.01 significance level to test the claim that the return rate is less than 15%.

Identifying H0and H1. In Exercises 5–8, do the following:

a. Express the original claim in symbolic form.

b. Identify the null and alternative hypotheses.

Pulse Rates Claim: The mean pulse rate (in beats per minute, or bpm) of adult males is equal to 69 bpm. For the random sample of 153 adult males in Data Set 1 “Body Data” in Appendix B, the mean pulse rate is 69.6 bpm and the standard deviation is 11.3 bpm.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free