Chapter 8: Q. 10 (page 392)
Determine the critical value(s) for a one-mean -test at the significance level if the test is
a. right tailed. b. left tailed
c. two tailed
Short Answer
For right tailed,
For left tailed,
For two tailed,
Chapter 8: Q. 10 (page 392)
Determine the critical value(s) for a one-mean -test at the significance level if the test is
a. right tailed. b. left tailed
c. two tailed
For right tailed,
For left tailed,
For two tailed,
All the tools & learning materials you need for study success - in one app.
Get started for freeTest Statistics. In Exercises 13–16, refer to the exercise identified and find the value of the test statistic. (Refer to Table 8-2 on page 362 to select the correct expression for evaluating the test statistic.)
16. Exercise 8 “Pulse Rates”
Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.
OxyContin The drug OxyContin (oxycodone) is used to treat pain, but it is dangerous because it is addictive and can be lethal. In clinical trials, 227 subjects were treated with OxyContin and 52 of them developed nausea (based on data from Purdue Pharma L.P.). Use a 0.05 significance level to test the claim that more than 20% of OxyContin users develop nausea. Does the rate of nausea appear to be too high?
Testing Claims About Proportions. In Exercises 9–32, test the given claim. Identify the null hypothesis, alternative hypothesis, test statistic, P-value, or critical value(s), then state the conclusion about the null hypothesis, as well as the final conclusion that addresses the original claim. Use the P-value method unless your instructor specifies otherwise. Use the normal distribution as an approximation to the binomial distribution, as described in Part 1 of this section.
Touch Therapy Repeat the preceding exercise using a 0.01 significance level. Does the conclusion change?
Testing Hypotheses. In Exercises 13–24, assume that a simple random sample has been and test the given claim. Unless specified by your instructor, use either the P-value method or the critical value method for testing hypotheses. Identify the null and alternative hypotheses, test statistic, P-value (or range of P-values), or critical value(s), and state the final conclusion that addresses the original claim.
Course Evaluations Data Set 17 “Course Evaluations” in Appendix B includes data from student evaluations of courses. The summary statistics are n = 93, x = 3.91, s = 0.53. Use a 0.05 significance level to test the claim that the population of student course evaluations has a mean equal to 4.00.
In Exercises 9–12, refer to the exercise identified. Make subjective estimates to decide whether results are significantly low or significantly high, then state a conclusion about the original claim. For example, if the claim is that a coin favours heads and sample results consist of 11 heads in 20 flips, conclude that there is not sufficient evidence to support the claim that the coin favours heads (because it is easy to get 11 heads in 20 flips by chance with a fair coin).
Exercise 5 “Online Data”
What do you think about this solution?
We value your feedback to improve our textbook solutions.