Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Questions 6–10 refer to the sample data in the following table, which describes the fate of the passengers and crew aboard the Titanic when it sank on April 15, 1912. Assume that the data are a sample from a large population and we want to use a 0.05 significance level to test the claim that surviving is independent of whether the person is a man, woman, boy, or girl.


Men

Women

Boys

Girls

Survived

332

318

29

27

Died

1360

104

35

18

Identify the null and alternative hypotheses corresponding to the stated claim.

Short Answer

Expert verified

The null hypothesis for this test is as follows:

The survival of the passenger is independent of whether he/she is a man, woman, boy or girl.

The alternative hypothesis for this test is as follows:

The survival of the passenger is not independent of whether he/she is a man, woman, boy or girl.

Step by step solution

01

Given information

A contingency table is constructed that shows the number of passengers who survived/died according to whether they were male, female, boy or girl.

02

Hypotheses

It is required to test the claim that the survival of the passenger does is independent of whether the person is a man, woman, boy or girl.

The null hypothesis and the alternative hypothesis is as follows:

\({H_0}:\)The survival of the passenger is independent of whether he/she is a man, woman, boy or girl.

\({H_1}:\)The survival of the passenger is not independent of whether he/she is a man, woman, boy or girl.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Cybersecurity The table below lists leading digits of 317 inter-arrival Internet traffic times for a computer, along with the frequencies of leading digits expected with Benford’s law (from Table 11-1 in the Chapter Problem).

a. Identify the notation used for observed and expected values.

b. Identify the observed and expected values for the leading digit of 2.

c. Use the results from part (b) to find the contribution to the\({\chi ^2}\)test statistic from the category representing the leading digit of 2.

Leading Digit

1

2

3

4

5

6

7

8

9

Benford’s

Law

30.1%

17.6%

12.5%

9.7%

7.9%

6.7%

5.8%

5.1%

4.6%

Leading Digits

of Inter-Arrival

Traffic Times

76

62

29

33

19

27

28

21

22

The accompanying TI-83/84 Plus calculator display results from thehypothesis test described in Exercise 1. Assume that the hypothesis test requirements are allsatisfied. Identify the test statistic and the P-value (expressed in standard form and rounded tothree decimal places), and then state the conclusion about the null hypothesis.

Critical Thinking: Was Allstate wrong? The Allstate insurance company once issued a press release listing zodiac signs along with the corresponding numbers of automobile crashes, as shown in the first and last columns in the table below. In the original press release, Allstate included comments such as one stating that Virgos are worried and shy, and they were involved in 211,650 accidents, making them the worst offenders. Allstate quickly issued an apology and retraction. In a press release, Allstate included this: “Astrological signs have absolutely no role in how we base coverage and set rates. Rating by astrology would not be actuarially sound.”

Analyzing the Results The original Allstate press release did not include the lengths (days) of the different zodiac signs. The preceding table lists those lengths in the third column. A reasonable explanation for the different numbers of crashes is that they should be proportional to the lengths of the zodiac signs. For example, people are born under the Capricorn sign on 29 days out of the 365 days in the year, so they are expected to have 29/365 of the total number of crashes. Use the methods of this chapter to determine whether this appears to explain the results in the table. Write a brief report of your findings.

Zodiac sign

Dates

Length(days)

Crashes

Capricorn

Jan.18-Feb. 15

29

128,005

Aquarius

Feb.16-March 11

24

106,878

Pisces

March 12-April 16

36

172,030

Aries

April 17-May 13

27

112,402

Taurus

May 14-June 19

37

177,503

Gemini

June 20-July 20

31

136,904

Cancer

July21-Aug.9

20

101,539

Leo

Aug.10-Sep.15

37

179,657

Virgo

Sep.16-Oct.30

45

211,650

Libra

Oct.31-Nov 22

23

110,592

Scorpio

Nov. 23-Nov. 28

6

26,833

Ophiuchus

Nov.29-Dec.17

19

83,234

Sagittarius

Dec.18-Jan.17

31

154,477

In Exercises 1–4, use the following listed arrival delay times (minutes) for American Airline flights from New York to Los Angeles. Negative values correspond to flights that arrived early. Also shown are the SPSS results for analysis of variance. Assume that we plan to use a 0.05 significance level to test the claim that the different flights have the same mean arrival delay time.

Flight 1

-32

-25

-26

-6

5

-15

-17

-36

Flight 19

-5

-32

-13

-9

-19

49

-30

-23

Flight 21

-23

28

103

-19

-5

-46

13

-3

Test Statistic What is the value of the test statistic? What distribution is used with the test statistic?

Car Repair Costs Listed below are repair costs (in dollars) for cars crashed at 6 mi/h in full-front crash tests and the same cars crashed at 6 mi/h in full-rear crash tests (based on data from the Insurance Institute for Highway Safety). The cars are the Toyota Camry, Mazda 6, Volvo S40, Saturn Aura, Subaru Legacy, Hyundai Sonata, and Honda Accord. Is there sufficient evidence to conclude that there is a linear correlation between the repair costs from full-front crashes and full-rear crashes?

Front

936

978

2252

1032

3911

4312

3469

Rear

1480

1202

802

3191

1122

739

2767

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free