Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1–4, use the following listed arrival delay times (minutes) for American Airline flights from New York to Los Angeles. Negative values correspond to flights that arrived early. Also shown are the SPSS results for analysis of variance. Assume that we plan to use a 0.05 significance level to test the claim that the different flights have the same mean arrival delay time.

Flight 1

-32

-25

-26

-6

5

-15

-17

-36

Flight 19

-5

-32

-13

-9

-19

49

-30

-23

Flight 21

-23

28

103

-19

-5

-46

13

-3

P-Value If we use a 0.05 significance level in analysis of variance with the sample data given in Exercise 1, what is the P-value? What should we conclude? If a passenger abhors late flight arrivals, can that passenger be helped by selecting one of the flights?

Short Answer

Expert verified

The p-value for the test is 0.285.

The null hypothesis is failed to be rejected at 0.05 level of significance.

The passenger cannot be helped as all flights have statistically the same mean arrival delay time.

Step by step solution

01

Given information

The SPSS output for the arrival delay times, along with the observations of three flights,are given.

02

Identify the p-value

P-value is the probability of obtaininga value as extreme as the test statistic. If the value is large, the chances of rejecting the null hypothesis lower.

From the output table, the value computed in the significance column against the test statistic is the p-value,which is 0.285.

03

Decision rule using the p-value

The decision rule states two criteria:

  • If the p-value is greater than the significance level, the null hypothesis fails to be rejected.
  • If the p-value is lower than the significance level, the null hypothesis is rejected.

The significance level is 0.05. The p-value is larger than 0.05, implying that the null hypothesis would fail to be rejected at a 0.05 level of significance.

The statistical hypothesis for the test is as follows:

Null hypothesis: The mean of arrival delays for all flights is the same.

Alternative hypothesis: The mean of arrival delays for at least one flight differs.

As a result, it can be stated that there is sufficient evidence to conclude that the mean arrival delay for all flights is equal.

04

Explain if one of the flights can be selected

As per the conclusion, the mean arrival delay for all three flights is equal. Thus, no flight is different from the rest based on the arrival delay time.

Thus, it is difficult to help the passenger select one of these flights.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Clinical Trial of Lipitor Lipitor is the trade name of the drug atorvastatin, which is used to reduce cholesterol in patients. (Until its patent expired in 2011, this was the largest-selling drug in the world, with annual sales of $13 billion.) Adverse reactions have been studied in clinical trials, and the table below summarizes results for infections in patients from different treatment groups (based on data from Parke-Davis). Use a 0.01 significance level to test the claim that getting an infection is independent of the treatment. Does the atorvastatin (Lipitor) treatment appear to have an effect on infections?


Placebo

Atorvastatin 10 mg

Atorvastatin 40 mg

Atorvastatin 80 mg

Infection

27

89

8

7

No Infection

243

774

71

87

Police Calls The police department in Madison, Connecticut, released the following numbers of calls for the different days of the week during February that had 28 days: Monday (114); Tuesday (152); Wednesday (160); Thursday (164); Friday (179); Saturday (196); Sunday (130). Use a 0.01 significance level to test the claim that the different days of the week have the same frequencies of police calls. Is there anything notable about the observed frequencies?

The accompanying TI-83/84 Plus calculator display results from thehypothesis test described in Exercise 1. Assume that the hypothesis test requirements are allsatisfied. Identify the test statistic and the P-value (expressed in standard form and rounded tothree decimal places), and then state the conclusion about the null hypothesis.

Cybersecurity The accompanying Statdisk results shown in the margin are obtained from the data given in Exercise 1. What should be concluded when testing the claim that the leading digits have a distribution that fits well with Benford’s law?

The table below includes results from polygraph (lie detector) experiments conducted by researchers Charles R. Honts (Boise State University) and Gordon H. Barland (Department of Defense Polygraph Institute). In each case, it was known if the subject lied or did not lie, so the table indicates when the polygraph test was correct. Use a 0.05 significance level to test the claim that whether a subject lies is independent of the polygraph test indication. Do the results suggest that polygraphs are effective in distinguishing between truths and lies?

Did the subject Actually Lie?


No (Did Not Lie)

Yes (Lied)

Polygraph test indicates that the subject lied.


15

42

Polygraph test indicates that the subject did not lied.


32

9

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free