Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 1–5 refer to the sample data in the following table, which summarizes the last digits of the heights (cm) of 300 randomly selected subjects (from Data Set 1 “Body Data” in Appendix B). Assume that we want to use a 0.05 significance level to test the claim that the data are from a population having the property that the last digits are all equally likely.

Last Digit

0

1

2

3

4

5

6

7

8

9

Frequency

30

35

24

25

35

36

37

27

27

24

When testing the claim in Exercise 1, what are the observed and expected frequencies for the last digit of 7?

Short Answer

Expert verified

The observed frequency for the last digit of 7 is equal to 27.

The expected frequency for the last digit of 7 is equal to 30.

Step by step solution

01

Given information

The last digits of the heights of a sample of people are tabulated along with their respective frequencies.

02

Observed and expected frequencies

The observed frequency corresponding to a particular digit is the same as the frequency tabulated in the question.

Thus, the observed frequency for digit 7 is equal to 27.

The expected frequency corresponding to any digit is computed using the given formula:

\(E = \frac{n}{k}\)

where

n is the sum of all frequencies

k is the number of digits given

The sum of all frequencies is equal to:

\(\begin{aligned}{c}n = 30 + 35 + ......24\\ = 300\end{aligned}\)

The number of digits considered (k) is equal to 10.

Thus, the expected frequency for the last digit of 7 (same for all digits) is computed as follows:

\(\begin{aligned}{c}E = \frac{n}{k}\\ = \frac{{300}}{{10}}\\ = 30\end{aligned}\)

Therefore, the expected frequency for the last digit of 7 is equal to 30.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a clinical trial of the effectiveness of echinacea for preventing

colds, the results in the table below were obtained (based on data from “An Evaluation of Echinacea Angustifoliain Experimental Rhinovirus Infections,” by Turner et al., NewEngland Journal of Medicine,Vol. 353, No. 4). Use a 0.05 significance level to test the claim that getting a cold is independent of the treatment group. What do the results suggest about the

effectiveness of echinacea as a prevention against colds?

Treatment Group


Placebo

Echinacea:

20% Extract

Echinacea:

60% Extract

Got a Cold

88

48

42

Did Not Get a Cold

15

4

10

Police Calls The police department in Madison, Connecticut, released the following numbers of calls for the different days of the week during February that had 28 days: Monday (114); Tuesday (152); Wednesday (160); Thursday (164); Friday (179); Saturday (196); Sunday (130). Use a 0.01 significance level to test the claim that the different days of the week have the same frequencies of police calls. Is there anything notable about the observed frequencies?

In Exercises 5–20, conduct the hypothesis test and provide the test statistic and the P-value and, or critical value, and state the conclusion.

Baseball Player Births In his book Outliers, author Malcolm Gladwell argues that more baseball players have birth dates in the months immediately following July 31, because that was the age cutoff date for nonschool baseball leagues. Here is a sample of frequency counts of months of birth dates of American-born Major League Baseball players starting with January: 387, 329, 366, 344, 336, 313, 313, 503, 421, 434, 398, 371. Using a 0.05 significance level, is there sufficient evidence to warrant rejection of the claim that American-born Major League Baseball players are born in different months with the same frequency? Do the sample values appear to support Gladwell’s claim?

In his book Outliers,author Malcolm Gladwell argues that more

American-born baseball players have birth dates in the months immediately following July 31 because that was the age cutoff date for nonschool baseball leagues. The table below lists months of births for a sample of American-born baseball players and foreign-born baseball players. Using a 0.05 significance level, is there sufficient evidence to warrant rejection of the claim that months of births of baseball players are independent of whether they are born in America? Do the data appear to support Gladwell’s claim?


Born in America

Foreign Born

Jan.

387

101

Feb.

329

82

March

366

85

April

344

82

May

336

94

June

313

83

July

313

59

Aug.

503

91

Sept.

421

70

Oct.

434

100

Nov.

398

103

Dec.

371

82

The accompanying TI-83/84 Plus calculator display results from thehypothesis test described in Exercise 1. Assume that the hypothesis test requirements are allsatisfied. Identify the test statistic and the P-value (expressed in standard form and rounded tothree decimal places), and then state the conclusion about the null hypothesis.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free