Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercises 1–5 refer to the sample data in the following table, which summarizes the last digits of the heights (cm) of 300 randomly selected subjects (from Data Set 1 “Body Data” in Appendix B). Assume that we want to use a 0.05 significance level to test the claim that the data are from a population having the property that the last digits are all equally likely.

Last Digit

0

1

2

3

4

5

6

7

8

9

Frequency

30

35

24

25

35

36

37

27

27

24

What are the null and alternative hypotheses corresponding to the stated claim?

Short Answer

Expert verified

The null hypothesis and the alternative hypothesis for the given problem is as follows:

\(\begin{aligned}{l}{H_0}:{p_0} = {p_1} = {p_2} = ... = {p_9}\\{H_1}:{\rm{Atleast}}\;{\rm{one}}\;{\rm{of}}\;{\rm{the}}\;{\rm{probabilities}}\;{\rm{is}}\;{\rm{diiferent}}{\rm{.}}\end{aligned}\)

Step by step solution

01

Given information

The last digits of the heights of a sample of people are tabulated along with their respective frequencies.

02

Hypotheses

The claim is to test that the sample is chosen from the population with the property that the has last digits of the heights of people are equally likely to occur.

Let\({p_0},{p_1},{p_2},...,{p_9}\)be the probabilities of the last digitof the heights of a sample of people.

The null hypothesis is written as follows:

The probabilities of the last digits of the heights of people are likely to occur equally.

The alternative hypothesis is written as follows:

The probabilities of the last digits of the heights of people are not likely to occur equally.

In terms of notations, the null and alternative hypothesis is:

\(\begin{aligned}{l}{H_0}:{p_0} = {p_1} = {p_2} = ... = {p_9}\\{H_1}:{\rm{Atleast}}\;{\rm{one}}\;{\rm{of}}\;{\rm{the}}\;{\rm{probabilities}}\;{\rm{is}}\;{\rm{diiferent}}{\rm{.}}\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The accompanying table is from a study conducted

with the stated objective of addressing cell phone safety by understanding why we use a particular ear for cell phone use. (See “Hemispheric Dominance and Cell Phone Use,” by Seidman, Siegel, Shah, and Bowyer, JAMA Otolaryngology—Head & Neck Surgery,Vol. 139, No. 5.)

The goal was to determine whether the ear choice is associated with auditory or language brain hemispheric dominance. Assume that we want to test the claim that handedness and cell phone ear preference are independent of each other.

a. Use the data in the table to find the expected value for the cell that has an observed frequency of 3. Round the result to three decimal places.

b. What does the expected value indicate about the requirements for the hypothesis test?

Right Ear

Left Ear

No Preference

Right-Handed

436

166

40

Left-Handed

16

50

3

Exercises 1–5 refer to the sample data in the following table, which summarizes the last digits of the heights (cm) of 300 randomly selected subjects (from Data Set 1 “Body Data” in Appendix B). Assume that we want to use a 0.05 significance level to test the claim that the data are from a population having the property that the last digits are all equally likely.

Last Digit

0

1

2

3

4

5

6

7

8

9

Frequency

30

35

24

25

35

36

37

27

27

24

If using a 0.05 significance level to test the stated claim, find the number of degrees of freedom.

Benford’s Law. According to Benford’s law, a variety of different data sets include numbers with leading (first) digits that follow the distribution shown in the table below. In Exercises 21–24, test for goodness-of-fit with the distribution described by Benford’s law.

Leading Digits

Benford's Law: Distributuon of leading digits

1

30.10%

2

17.60%

3

12.50%

4

9.70%

5

7.90%

6

6.70%

7

5.80%

8

5.10%

9

4.60%

Author’s Computer Files The author recorded the leading digits of the sizes of the electronic document files for the current edition of this book. The leading digits have frequencies of 55, 25, 17, 24, 18, 12, 12, 3, and 4 (corresponding to the leading digits of 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively). Using a 0.05 significance level, test for goodness-of-fit with Benford’s law.

Questions 6–10 refer to the sample data in the following table, which describes the fate of the passengers and crew aboard the Titanic when it sank on April 15, 1912. Assume that the data are a sample from a large population and we want to use a 0.05 significance level to test the claim that surviving is independent of whether the person is a man, woman, boy, or girl.


Men

Women

Boys

Girls

Survived

332

318

29

27

Died

1360

104

35

18

Is the hypothesis test left-tailed, right-tailed, or two-tailed?

Questions 6–10 refer to the sample data in the following table, which describes the fate of the passengers and crew aboard the Titanic when it sank on April 15, 1912. Assume that the data are a sample from a large population and we want to use a 0.05 significance level to test the claim that surviving is independent of whether the person is a man, woman, boy, or girl.


Men

Women

Boys

Girls

Survived

332

318

29

27

Died

1360

104

35

18

Identify the null and alternative hypotheses corresponding to the stated claim.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free