Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Cybersecurity When using the data from Exercise 1 to test for goodness-of-fit with the distribution described by Benford’s law, identify the null and alternative hypotheses.

Short Answer

Expert verified

The null hypothesis and the alternative hypothesis is

\(\begin{aligned}{l}{H_0}:{p_1} = 0.301,{p_2} = 0.176,{p_3} = 0.125,{p_4} = 0.097,{p_5} = 0.079,{p_6} = 0.067,{p_7} = 0.058,\\\;\;\;\;\;{p_8} = 0.051,{p_9} = 0.046\end{aligned}\)

\({H_1}:\)At least one of the proportions will differ from the others.

Step by step solution

01

Given information

The observed frequencies and the expected frequencies of the leading digits of inter-arrival traffic times are tabulated.

02

Identify the hypotheses

The following hypotheses are set up to test for the goodness of fit test of the given distribution:

Null Hypothesis:

The null hypothesis is that in which the proportions of all the leading digits should be equal to the claimed value.

\(\begin{aligned}{l}{H_0}:{p_1} = 0.301,{p_2} = 0.176,{p_3} = 0.125,{p_4} = 0.097,{p_5} = 0.079,{p_6} = 0.067,{p_7} = 0.058,\\\;\;\;\;\;{p_8} = 0.051,{p_9} = 0.046\end{aligned}\)

Alternative Hypothesis:

The alternative hypothesis is that in which at least one of the proportions should not be equal to the claimed value.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Forward Grip Reach and Ergonomics When designing cars and aircraft, we must consider the forward grip reach of women. Women have normally distributed forward grip reaches with a mean of 686 mm and a standard deviation of 34 mm (based on anthropometric survey data from Gordon, Churchill, et al.).

a. If a car dashboard is positioned so that it can be reached by 95% of women, what is the shortest forward grip reach that can access the dashboard?

b. If a car dashboard is positioned so that it can be reached by women with a grip reach greater than 650 mm, what percentage of women cannot reach the dashboard? Is that percentage too high?

c. Find the probability that 16 randomly selected women have forward grip reaches with a mean greater than 680 mm. Does this result have any effect on the design?

Questions 6–10 refer to the sample data in the following table, which describes the fate of the passengers and crew aboard the Titanic when it sank on April 15, 1912. Assume that the data are a sample from a large population and we want to use a 0.05 significance level to test the claim that surviving is independent of whether the person is a man, woman, boy, or girl.


Men

Women

Boys

Girls

Survived

332

318

29

27

Died

1360

104

35

18

Is the hypothesis test left-tailed, right-tailed, or two-tailed?

The table below includes results from polygraph (lie detector) experiments conducted by researchers Charles R. Honts (Boise State University) and Gordon H. Barland (Department of Defense Polygraph Institute). In each case, it was known if the subject lied or did not lie, so the table indicates when the polygraph test was correct. Use a 0.05 significance level to test the claim that whether a subject lies is independent of the polygraph test indication. Do the results suggest that polygraphs are effective in distinguishing between truths and lies?

Did the subject Actually Lie?


No (Did Not Lie)

Yes (Lied)

Polygraph test indicates that the subject lied.


15

42

Polygraph test indicates that the subject did not lied.


32

9

In a clinical trial of the effectiveness of echinacea for preventing

colds, the results in the table below were obtained (based on data from “An Evaluation of Echinacea Angustifoliain Experimental Rhinovirus Infections,” by Turner et al., NewEngland Journal of Medicine,Vol. 353, No. 4). Use a 0.05 significance level to test the claim that getting a cold is independent of the treatment group. What do the results suggest about the

effectiveness of echinacea as a prevention against colds?

Treatment Group


Placebo

Echinacea:

20% Extract

Echinacea:

60% Extract

Got a Cold

88

48

42

Did Not Get a Cold

15

4

10

In Exercises 5–20, conduct the hypothesis test and provide the test statistic and the P-value and , or critical value, and state the conclusion.

World Series Games The table below lists the numbers of games played in 105 Major League Baseball (MLB) World Series. This table also includes the expected proportions for the numbers of games in a World Series, assuming that in each series, both teams have about the same chance of winning. Use a 0.05 significance level to test the claim that the actual numbers of games fit the distribution indicated by the expected proportions.

Games Played

4

5

6

7

World Series Contests

21

23

23

38

Expected Proportion

2/16

4/16

5/16

5/16

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free