Assume that random sampling is conducted.
Let O denote the observed frequencies of the leading digits.
The observed frequencies are noted below:
\(\begin{aligned}{c}{O_1} = 55\\{O_2} = 25\\{O_3} = 17\;\;\\{O_4} = 24\end{aligned}\)
\({O_5} = 18\)
\(\begin{aligned}{c}{O_6} = 12\\{O_7} = 12\;\;\\{O_8} = 3\;\;\\{O_9} = 4\end{aligned}\)
The sum of all observed frequencies is computed below:
\(\begin{aligned}{c}n = 55 + 25 + ... + 4\\ = 170\end{aligned}\)
Let E denote the expected frequencies.
Let the expected proportion and expected frequencies of the i-th digit as given by Benford’s law.
Leading Digits | Benford's Law: Distribution of leading digits | Proportions | Expected Frequencies |
1 | 30.10% | \(\begin{aligned}{c}{p_1} = \frac{{30.1}}{{100}}\\ = 0.301\end{aligned}\) | \(\begin{aligned}{c}{E_1} = n{p_1}\\ = 170\left( {0.301} \right)\\ = 51.17\end{aligned}\) |
2 | 17.60% | \(\begin{aligned}{c}{p_2} = \frac{{17.6}}{{100}}\\ = 0.176\end{aligned}\) | \(\begin{aligned}{c}{E_2} = n{p_2}\\ = 170\left( {0.176} \right)\\ = 29.90\end{aligned}\) |
3 | 12.50% | \(\begin{aligned}{c}{p_3} = \frac{{12.5}}{{100}}\\ = 0.125\end{aligned}\) | \(\begin{aligned}{c}{E_3} = n{p_3}\\ = 170\left( {0.125} \right)\\ = 21.25\end{aligned}\) |
4 | 9.70% | \(\begin{aligned}{c}{p_4} = \frac{{9.7}}{{100}}\\ = 0.097\end{aligned}\) | \(\begin{aligned}{c}{E_4} = n{p_4}\\ = 170\left( {0.097} \right)\\ = 16.49\end{aligned}\) |
5 | 7.90% | \(\begin{aligned}{c}{p_5} = \frac{{7.9}}{{100}}\\ = 0.079\end{aligned}\) | \(\begin{aligned}{c}{E_5} = n{p_5}\\ = 170\left( {0.079} \right)\\ = 13.43\end{aligned}\) |
6 | 6.70% | \(\begin{aligned}{c}{p_6} = \frac{{6.7}}{{100}}\\ = 0.067\end{aligned}\) | \(\begin{aligned}{c}{E_6} = n{p_6}\\ = 170\left( {0.067} \right)\\ = 11.39\end{aligned}\) |
7 | 5.80% | \(\begin{aligned}{c}{p_7} = \frac{{5.8}}{{100}}\\ = 0.058\end{aligned}\) | \(\begin{aligned}{c}{E_7} = n{p_7}\\ = 170\left( {0.058} \right)\\ = 9.86\end{aligned}\) |
8 | 5.10% | \(\begin{aligned}{c}{p_8} = \frac{{5.1}}{{100}}\\ = 0.051\end{aligned}\) | \(\begin{aligned}{c}{E_8} = n{p_8}\\ = 170\left( {0.051} \right)\\ = 8.67\end{aligned}\) |
9 | 4.60% | \(\begin{aligned}{c}{p_9} = \frac{{4.6}}{{100}}\\ = 0.046\end{aligned}\) | \(\begin{aligned}{c}{E_9} = n{p_9}\\ = 170\left( {0.046} \right)\\ = 7.82\end{aligned}\) |
As all the expected values are higher than 5, the requirements of the test are satisfied.