Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a clinical trial of the effectiveness of echinacea for preventing

colds, the results in the table below were obtained (based on data from “An Evaluation of Echinacea Angustifoliain Experimental Rhinovirus Infections,” by Turner et al., NewEngland Journal of Medicine,Vol. 353, No. 4). Use a 0.05 significance level to test the claim that getting a cold is independent of the treatment group. What do the results suggest about the

effectiveness of echinacea as a prevention against colds?

Treatment Group


Placebo

Echinacea:

20% Extract

Echinacea:

60% Extract

Got a Cold

88

48

42

Did Not Get a Cold

15

4

10

Short Answer

Expert verified

Getting a cold is independent of the treatment group. Thus, Echinacea is not effective to prevent colds.

Step by step solution

01

Given information

The data forthe effectiveness of Echinacea for preventing colds is provided.

The level of significance is 0.05.

02

Compute the expected frequencies

Assume that random selections are done for subjects, and each subject is assigned randomly to each group.

Theexpected frequency formulais computed as,

\(E = \frac{{\left( {row\;total} \right)\left( {column\;total} \right)}}{{\left( {grand\;total} \right)}}\)

The row and column total for the observed frequencies is represented as,


Placebo

Echinacea:

20% Extract

Echinacea:

60% Extract

Row Total

Got a Cold

88

48

42

178

Did Not Get a Cold

15

4

10

29

Column Total

103

52

52

207

Theexpected frequency tableis represented as,


Placebo

Echinacea:

20% Extract

Echinacea:

60% Extract

Got a Cold

88.5700

44.7150

44.7150

Did Not Get a Cold

14.4300

7.2850

7.2850

Each expected value is greater than 5.

Thus, the requirements for the test are satisfied.

03

State the null and alternate hypothesis

The hypotheses are stated as:

\({H_0}:\)Getting a cold is independent of the treatment group.

\({H_1}:\)Getting a cold is dependent on the treatment group.

04

Compute the test statistic

The value of the test statistic is computed as,

\(\begin{aligned}{c}{\chi ^2} = \sum {\frac{{{{\left( {O - E} \right)}^2}}}{E}} \\ = \frac{{{{\left( {88 - 88.5700} \right)}^2}}}{{88.5700}} + \frac{{{{\left( {48 - 44.7150} \right)}^2}}}{{44.7150}} + ... + \frac{{{{\left( {10 - 7.2850} \right)}^2}}}{{7.2850}}\\ = 2.925\end{aligned}\)

Therefore, the value of the test statistic is 2.925.

05

Compute the degrees of freedom

The degrees of freedomare computed as,

\(\begin{aligned}{c}\left( {r - 1} \right)\left( {c - 1} \right) = \left( {2 - 1} \right)\left( {3 - 1} \right)\\ = 2\end{aligned}\)

Therefore, the degrees of freedom are 2.

06

Compute the critical value

From the chi-square table, the critical value for the row corresponding to 2 degrees of freedom and at 0.05 level of significance 5.991.

Therefore, the critical value is 5.991.

The P-value is obtained as 0.232.

07

State the decision

Since the critical value (5.991) is greater than the value of the test statistic (2.925). In this case, the null hypothesis fails to be rejected.

Therefore, the decision is that null hypothesis is failed to be rejected.

The P-value is obtained as 0.2316.

08

State the conclusion

There issufficient evidence to support the claimthat getting a cold is independent of the treatment group.

Thus, it can be said that Echinacea is not effective to prevent colds.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Using Yates’s Correction for Continuity The chi-square distribution is continuous, whereas the test statistic used in this section is discrete. Some statisticians use Yates’s correction for continuity in cells with an expected frequency of less than 10 or in all cells of a contingency table with two rows and two columns. With Yates’s correction, we replace

\(\sum \frac{{{{\left( {O - E} \right)}^2}}}{E}\)with \(\sum \frac{{{{\left( {\left| {O - E} \right| - 0.5} \right)}^2}}}{E}\)

Given the contingency table in Exercise 9 “Four Quarters the Same as $1?” find the value of the test \({\chi ^2}\)statistic using Yates’s correction in all cells. What effect does Yates’s correction have?

The accompanying table lists results of overtime football

games before and after the overtime rule was changed in the National Football League in 2011. Use a 0.05 significance level to test the claim of independence between winning an overtime game and whether playing under the old rule or the new rule. What do the results suggest about

the effectiveness of the rule change?

Before Rule Change

After Rule Change

Overtime Coin Toss Winner Won the Game

252

24

Overtime Coin Toss Winner Lost the Game

208

23

In Exercises 1–4, use the following listed arrival delay times (minutes) for American Airline flights from New York to Los Angeles. Negative values correspond to flights that arrived early. Also shown are the SPSS results for analysis of variance. Assume that we plan to use a 0.05 significance level to test the claim that the different flights have the same mean arrival delay time.

Flight 1

-32

-25

-26

-6

5

-15

-17

-36

Flight 19

-5

-32

-13

-9

-19

49

-30

-23

Flight 21

-23

28

103

-19

-5

-46

13

-3

P-Value If we use a 0.05 significance level in analysis of variance with the sample data given in Exercise 1, what is the P-value? What should we conclude? If a passenger abhors late flight arrivals, can that passenger be helped by selecting one of the flights?

Clinical Trial of Lipitor Lipitor is the trade name of the drug atorvastatin, which is used to reduce cholesterol in patients. (Until its patent expired in 2011, this was the largest-selling drug in the world, with annual sales of $13 billion.) Adverse reactions have been studied in clinical trials, and the table below summarizes results for infections in patients from different treatment groups (based on data from Parke-Davis). Use a 0.01 significance level to test the claim that getting an infection is independent of the treatment. Does the atorvastatin (Lipitor) treatment appear to have an effect on infections?


Placebo

Atorvastatin 10 mg

Atorvastatin 40 mg

Atorvastatin 80 mg

Infection

27

89

8

7

No Infection

243

774

71

87

Benford’s Law. According to Benford’s law, a variety of different data sets include numbers with leading (first) digits that follow the distribution shown in the table below. In Exercises 21–24, test for goodness-of-fit with the distribution described by Benford’s law.

Leading Digits

Benford's Law: Distributuon of leading digits

1

30.10%

2

17.60%

3

12.50%

4

9.70%

5

7.90%

6

6.70%

7

5.80%

8

5.10%

9

4.60%

Detecting Fraud When working for the Brooklyn district attorney, investigator Robert Burton analyzed the leading digits of the amounts from 784 checks issued by seven suspect companies. The frequencies were found to be 0, 15, 0, 76, 479, 183, 8, 23, and 0, and those digits correspond to the leading digits of 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively. If the observed frequencies are substantially different from the frequencies expected with Benford’s law, the check amounts appear to result from fraud. Use a 0.01 significance level to test for goodness-of-fit with Benford’s law. Does it appear that the checks are the result of fraud?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free