Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A study of seat belt users andnonusers yielded the randomly selected sample data summarized in the given table (based on data from “What Kinds of People Do Not Use Seat Belts?” by Helsing and Comstock, American Journal of Public Health,Vol. 67, No. 11). Test the claim that the amount of smoking is independent of seat belt use. A plausible theory is that people who smoke more are lessconcerned about their health and safety and are therefore less inclined to wear seat belts. Is this theory supported by the sample data?

Number of Cigarettes Smoked per Day

0

1-14

15-34

35 and over

Wear Seat Belts

175

20

42

6

Don't Wear Seat Belts

149

17

41

9

Short Answer

Expert verified

The amount of smoking is independent of seatbelt use. There is not enough evidence to support the theory.

Step by step solution

01

Given information

The data for the seat belt users and nonusers are provided.

02

Compute the expected frequencies

Theexpected frequency formulais computed as,

\(E = \frac{{\left( {row\;total} \right)\left( {column\;total} \right)}}{{\left( {grand\;total} \right)}}\)

The table with row and column total is represented as,


0

1-14

15-34

35 and over

Row Total

Wear Seat Belts

175

20

42

6

243

Don't Wear Seat Belts

149

17

41

9

216

Column Total

324

37

83

15

459

Theexpected frequency tableis represented as,


0

1-14

15-34

35 and over

Wear Seat Belts

171.5294

19.5882

43.9412

7.9412

Don't Wear Seat Belts

152.4706

17.4118

39.0588

7.0588

The expected values are larger than 5. Assume the sampling is done randomly. Thus, the requirements of the test are satisfied.

03

State the null and alternate hypothesis

To test the independence of the two variables, the hypothesis is formulated as follows;

\({H_0}:\)The amount of smoking is independent of seat belt use.

\({H_1}:\)The amount of smoking is dependent on seat belt use.

04

Compute the test statistic

The value of the test statistic is computed as,

\[\begin{aligned}{c}{\chi ^2} = \sum {\frac{{{{\left( {O - E} \right)}^2}}}{E}} \\ = \frac{{{{\left( {175 - 171.5294} \right)}^2}}}{{171.5294}} + \frac{{{{\left( {20 - 19.5882} \right)}^2}}}{{19.5882}} + ... + \frac{{{{\left( {9 - 7.0588} \right)}^2}}}{{7.0588}}\\ = 1.3582\end{aligned}\]

Therefore, the value of the test statistic is 1.3582.

05

Compute the degrees of freedom

The degrees of freedom are computed as,

\(\begin{aligned}{c}\left( {r - 1} \right)\left( {c - 1} \right) = \left( {2 - 1} \right)\left( {4 - 1} \right)\\ = 3\end{aligned}\)

Therefore, the degrees of freedom are 3.

06

Compute the critical value

From the chi-square table, the critical value corresponding to 3 degrees of freedom and at 0.05 level of significance 7.815.

Therefore, the critical value is 7.815.

The P-value is obtained as 0.7154.

07

State the decision

Since the critical (7.815) is greater than the value of the test statistic (1.3582). In this case, the null hypothesis fails to be rejected.

Therefore, the decision is that we fail to reject the null hypothesis.

08

State the conclusion

There issufficient evidence to support the claimthatthecounts of cigarettes smoked in a day are independent of seat belt use.

Since the two behaviors are independent of each other, there is no evidence to support the theory that more cigarettes smoked by a person makes him or her less concerned of seatbelt use.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5–20, conduct the hypothesis test and provide the test statistic and the P-value and , or critical value, and state the conclusion.

California Daily 4 Lottery The author recorded all digits selected in California’s Daily 4 Lottery for the 60 days preceding the time that this exercise was created. The frequencies of the digits from 0 through 9 are 21, 30, 31, 33, 19, 23, 21, 16, 24, and 22. Use a 0.05 significance level to test the claim of lottery officials that the digits are selected in a way that they are equally likely.

The accompanying table is from a study conducted

with the stated objective of addressing cell phone safety by understanding why we use a particular ear for cell phone use. (See “Hemispheric Dominance and Cell Phone Use,” by Seidman, Siegel, Shah, and Bowyer, JAMA Otolaryngology—Head & Neck Surgery,Vol. 139, No. 5.)

The goal was to determine whether the ear choice is associated with auditory or language brain hemispheric dominance. Assume that we want to test the claim that handedness and cell phone ear preference are independent of each other.

a. Use the data in the table to find the expected value for the cell that has an observed frequency of 3. Round the result to three decimal places.

b. What does the expected value indicate about the requirements for the hypothesis test?

Right Ear

Left Ear

No Preference

Right-Handed

436

166

40

Left-Handed

16

50

3

Equivalent Tests A\({\chi ^2}\)test involving a 2\( \times \)2 table is equivalent to the test for the differencebetween two proportions, as described in Section 9-1. Using the claim and table inExercise 9 “Four Quarters the Same as $1?” verify that the\({\chi ^2}\)test statistic and the zteststatistic (found from the test of equality of two proportions) are related as follows:\({z^2}\)=\({\chi ^2}\).

Also show that the critical values have that same relationship.

Critical Thinking: Was Allstate wrong? The Allstate insurance company once issued a press release listing zodiac signs along with the corresponding numbers of automobile crashes, as shown in the first and last columns in the table below. In the original press release, Allstate included comments such as one stating that Virgos are worried and shy, and they were involved in 211,650 accidents, making them the worst offenders. Allstate quickly issued an apology and retraction. In a press release, Allstate included this: “Astrological signs have absolutely no role in how we base coverage and set rates. Rating by astrology would not be actuarially sound.”

Analyzing the Results The original Allstate press release did not include the lengths (days) of the different zodiac signs. The preceding table lists those lengths in the third column. A reasonable explanation for the different numbers of crashes is that they should be proportional to the lengths of the zodiac signs. For example, people are born under the Capricorn sign on 29 days out of the 365 days in the year, so they are expected to have 29/365 of the total number of crashes. Use the methods of this chapter to determine whether this appears to explain the results in the table. Write a brief report of your findings.

Zodiac sign

Dates

Length(days)

Crashes

Capricorn

Jan.18-Feb. 15

29

128,005

Aquarius

Feb.16-March 11

24

106,878

Pisces

March 12-April 16

36

172,030

Aries

April 17-May 13

27

112,402

Taurus

May 14-June 19

37

177,503

Gemini

June 20-July 20

31

136,904

Cancer

July21-Aug.9

20

101,539

Leo

Aug.10-Sep.15

37

179,657

Virgo

Sep.16-Oct.30

45

211,650

Libra

Oct.31-Nov 22

23

110,592

Scorpio

Nov. 23-Nov. 28

6

26,833

Ophiuchus

Nov.29-Dec.17

19

83,234

Sagittarius

Dec.18-Jan.17

31

154,477

Cybersecurity When using the data from Exercise 1 to test for goodness-of-fit with the distribution described by Benford’s law, identify the null and alternative hypotheses.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free