Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Alert nurses at the Veteran’s Affairs Medical Center in Northampton, Massachusetts, noticed an unusually high number of deaths at times when another nurse, Kristen Gilbert, was working. Those same nurses later noticed missing supplies of the drug epinephrine, which is a synthetic adrenaline that stimulates the heart. Kristen Gilbert was arrested and charged with four counts of murder and two counts of attempted murder. When seeking a grand jury indictment, prosecutors provided a key piece of evidence consisting of the table below. Use a 0.01 significance level to test the defense claim that deaths on shifts are independent of whether Gilbert was working. What does the result suggest about the guilt or innocence of Gilbert?

Shifts With a Death

Shifts Without a Death

Gilbert Was Working

40

217

Gilbert Was Not Working

34

1350

Short Answer

Expert verified

The deaths on shifts are dependent on whether Gilbert was working, which suggests the guilt of Gilbert.

Step by step solution

01

Given information

The data for theshifts with and without death and whether Gilbert was working is provided.

The level of significance is 0.01.

02

Compute the expected frequencies

Compute theexpected frequencies using the formula stated below,

\(E = \frac{{\left( {row\;total} \right)\left( {column\;total} \right)}}{{\left( {grand\;total} \right)}}\)

The counts for total rows and columns are,


Shifts With a Death

Shifts Without a Death

Row Total

Gilbert Was Working

40

217

257

Gilbert Was Not Working

34

1350

1384

Column Total

74

1567

1641

Theexpected frequency tableis represented as,


Shifts With a Death

Shifts Without a Death

Gilbert Was Working

11.5893

245.4107

Gilbert Was Not Working

62.4107

1321.5893

03

State the null and alternate hypothesis

The hypotheses are formulated as,

\({H_0}:\)The deaths on shifts are independent of whether Gilbert was working.

\({H_1}:\)The deaths on shifts are dependent on whether Gilbert was working.

04

Compute the test statistic

The value of the test statisticis computed as,

\(\begin{aligned}{c}{\chi ^2} = \sum {\frac{{{{\left( {O - E} \right)}^2}}}{E}} \\ = \frac{{{{\left( {40 - 11.5893} \right)}^2}}}{{11.5893}} + \frac{{{{\left( {217 - 245.4107} \right)}^2}}}{{245.4107}} + ... + \frac{{{{\left( {1350 - 1321.5893} \right)}^2}}}{{1321.5893}}\\ = 86.4809\\ \approx 86.481\end{aligned}\)

Therefore, the value of the test statistic is 86.481.

05

Compute the degrees of freedom

The degrees of freedomare computed as,

\(\begin{aligned}{c}\left( {r - 1} \right)\left( {c - 1} \right) = \left( {2 - 1} \right)\left( {2 - 1} \right)\\ = 1\end{aligned}\)

Therefore, the degrees of freedom are 1.

06

Compute the critical value

The critical value for 1 degrees of freedom and at 0.01 level of significance is 6.635.

Therefore, the critical value is 6.635.

The P-value is computed as 0.000.

07

State the decision

The critical (6.635) is less than the value of the test statistic (86.481). In this case, the null hypothesis is rejected.

Therefore, the decision is to reject the null hypothesis.

08

State the conclusion

There isinsufficient evidence to support the claimthat deaths on shifts are independent of whether Gilbert was working or not.

The results suggest that Gilbert cannot be considered as innocence for the deaths on the basis of results.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5–20, conduct the hypothesis test and provide the test statistic and the P-value and , or critical value, and state the conclusion.

World Series Games The table below lists the numbers of games played in 105 Major League Baseball (MLB) World Series. This table also includes the expected proportions for the numbers of games in a World Series, assuming that in each series, both teams have about the same chance of winning. Use a 0.05 significance level to test the claim that the actual numbers of games fit the distribution indicated by the expected proportions.

Games Played

4

5

6

7

World Series Contests

21

23

23

38

Expected Proportion

2/16

4/16

5/16

5/16

Clinical Trial of Lipitor Lipitor is the trade name of the drug atorvastatin, which is used to reduce cholesterol in patients. (Until its patent expired in 2011, this was the largest-selling drug in the world, with annual sales of $13 billion.) Adverse reactions have been studied in clinical trials, and the table below summarizes results for infections in patients from different treatment groups (based on data from Parke-Davis). Use a 0.01 significance level to test the claim that getting an infection is independent of the treatment. Does the atorvastatin (Lipitor) treatment appear to have an effect on infections?


Placebo

Atorvastatin 10 mg

Atorvastatin 40 mg

Atorvastatin 80 mg

Infection

27

89

8

7

No Infection

243

774

71

87

One Big Bill or Many Smaller Bills In a study of the “denomination effect,” 150 women in China were given either a single 100 yuan bill or a total of 100 yuan in smaller bills. The value of 100 yuan is about $15. The women were given the choice of spending the money on specific items or keeping the money. The results are summarized in the table below (based on “The Denomination Effect,” by Priya Raghubir and Joydeep Srivastava, Journal of Consumer Research, Vol. 36). Use a 0.05 significance level to test the claim that the form of the 100 yuan is independent of whether the money was spent. What does the result suggest about a denomination effect?

Spent the Money

Kept the Money

Women Given a Single 100-Yuan Bill

60

15

Women Given 100 Yuan in Smaller Bills

68

7

Probability Refer to the results from the 150 subjects in Cumulative Review Exercise 5.

a.Find the probability that if 1 of the 150 subjects is randomly selected, the result is a woman who spent the money.

b.Find the probability that if 1 of the 150 subjects is randomly selected, the result is a woman who spent the money or was given a single 100-yuan bill.

c.If two different women are randomly selected, find the probability that they both spent the money.

Questions 6–10 refer to the sample data in the following table, which describes the fate of the passengers and crew aboard the Titanic when it sank on April 15, 1912. Assume that the data are a sample from a large population and we want to use a 0.05 significance level to test the claim that surviving is independent of whether the person is a man, woman, boy, or girl.


Men

Women

Boys

Girls

Survived

332

318

29

27

Died

1360

104

35

18

Given that the P-value for the hypothesis test is 0.000 when rounded to three decimal places, what do you conclude? What do the results indicate about the rule that women and children should be the first to be saved?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free