Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Finding Critical Values. In Exercises 5–8, find the critical value \[{{\rm{z}}_{{{\rm{\alpha }} \mathord{\left/

{\vphantom {{\rm{\alpha }} {\rm{2}}}} \right.

\kern-\nulldelimiterspace} {\rm{2}}}}}\]that corresponds to the given confidence level.

98%

Short Answer

Expert verified

The critical value \({z_{\frac{\alpha }{2}}}\)for 98% level of confidence is 2.33.

Step by step solution

01

Given information

The level of significance is 98%.

02

Describe the concept of critical value

A critical value is a point on the test distribution that is compared to the test statistics to determine whether to reject the null hypothesis. It is denoted by \({z_{\frac{\alpha }{2}}}\)which is equal to z score within the area of \[\frac{\alpha }{2}\]in the right tail of the standard normal distribution for\(\alpha \) level of significance.

03

Find the critical value

When finding a critical value\({z_{\frac{\alpha }{2}}}\)for a particular value of \[\alpha \], note that \[\frac{\alpha }{2}\] is the cumulative area to the right of\({z_{\frac{\alpha }{2}}}\)which implies that the cumulative area to the left of \({z_{\frac{\alpha }{2}}}\) must be\[1 - \frac{\alpha }{2}\].

Here, for 98% confidence level,

\(\begin{array}{c}\alpha = 0.02\\1 - \frac{\alpha }{2} = 0.99\end{array}\)

To find the z score corresponding to the area 0.9900,

In the standard normal table for positive z score, find the value closest to 0.9900, which is 0.9901, corresponding row value is 2.3 and column values is 0.03which corresponds to the z-score of 2.33.

Therefore, the critical value for 98% level of significance is 2.33.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Birth Weights of Boys Use these summary statistics for birth weights of 195 boys: x¯=32.7hg,s=6.6hg. (based on Data Set 4 “Births” in Appendix B). Use a 95% confidencelevel. Are the results very different from those found in Exercise 9? Does it appear that boys and girls have very different birth weights?

Critical Thinking. In Exercises 17–28, use the data and confidence level to construct a confidence interval estimate of p, then address the given question.

Lipitor In clinical trials of the drug Lipitor (atorvastatin), 270 subjects were given a placebo, and 7 of them had allergic reactions. Among 863 subjects treated with 10 mg of the drug, 8 experienced allergic reactions. Construct the two 95% confidence interval estimates of the percentages of allergic reactions. Compare the results. What do you conclude?

Formats of Confidence Intervals. In Exercises 9–12, express the confidence interval using the indicated format. (The confidence intervals are based on the proportions of red, orange, yellow, and blue M&Ms in Data Set 27 “M&M Weights” in Appendix B.)

Yellow M&Ms Express the confidence interval (0.0169, 0.143) in the form ofp^-E<p<p^+E

Expressing Confidence Intervals Example 2 showed how the statistics ofn= 22 ands= 14.3 result in this 95% confidence interval estimate of σ: 11.0 < σ < 20.4. That confidence interval can also be expressed as (11.0, 20.4), but it cannot be expressed as 15.7± 4.7. Given that 15.7±4.7 results in values of 11.0 and 20.4, why is it wrong to express the confidence interval as 15.7±4.7?

Critical Thinking. In Exercises 17–28, use the data and confidence level to construct a confidence interval estimate of p, then address the given question. Smoking Stopped In a program designed to help patients stop smoking, 198 patients were given sustained care, and 82.8% of them were no longer smoking after one month. Among 199 patients given standard care, 62.8% were no longer smoking after one month (based on data from “Sustained Care Intervention and Post discharge Smoking Cessation Among Hospitalized Adults,” by Rigottiet al., Journal of the American Medical Association, Vol. 312, No. 7). Construct the two 95% confidence interval estimates of the percentages of success. Compare the results. What do you conclude?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free