Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Using Correct Distribution. In Exercises 5–8, assume that we want to construct a confidence interval. Do one of the following, as appropriate: (a) Find the critical value tα2 ,(b) find the critical value zα2,or (c) state that neither the normal distribution nor the t distribution applies.

Birth Weights Here are summary statistics for randomly selected weights of newborn girls:n=205,x¯=30.4hg,s=7.1hg (based on Data Set 4 “Births” in Appendix B). The confidence level is 95%.

Short Answer

Expert verified

In this case, the t-distribution applies.

The critical valuetα2 is 1.972.

Step by step solution

01

Given information

Based on Data set 4 “Birth” in Appendix B,the summary statistics for randomly selected weights of newborn girls asn=205,x¯=30.4hg,s=7.1hg

And, the confidence level is 95%.

02

  Describe the critical value 

The critical value is the border value which separates the sample statistics that are significantly high or low from those sample statistics that are not significant.

03

Find the appropriate distribution

For randomly selected samples, the conditions for t-distribution and normal distribution are as follow,

Ifσis not known andn>30then t-distribution is suitable to find the confidence interval.

If σis known and n>30then normal distribution is suitable to find the confidence interval.

In this case,σ is unknown and n=61, where n>30.So, t-distribution applies here.

04

Find the critical value tα2

To find the critical value tα2, it requires a value for the degrees of freedom.

The degree of freedom is,

degreeoffreedom=n-1=205-1=204

The 95% confidence level corresponds to α=0.05, so there is an area of 0.025 in each of the two tails of the t-distribution.

Referring to Table A-3 critical value of t-distribution, the critical value is expressed as,

tα2=t0.052=t0.025

It is obtained from the intersection of column with 0.05 for the “Area in Two Tails” (or use the same column with 0.025 for the “Area in One Tail”) and the row value number of degrees of freedom is 204, which is 1.972.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Confidence Intervals. In Exercises 9–24, construct the confidence interval estimate of the mean.

Student Evaluations Listed below are student evaluation ratings of courses, where a rating of 5 is for “excellent.” The ratings were obtained at the University of Texas at Austin. (See Data Set 17 “Course Evaluations” in Appendix B.) Use a 90% confidence level. What does the confidence interval tell us about the population of college students in Texas?

3.8 3.0 4.0 4.8 3.0 4.2 3.5 4.7 4.4 4.2 4.3 3.8 3.3 4.0 3.8

Constructing and Interpreting Confidence Intervals. In Exercises 13–16, use the given sample data and confidence level. In each case, (a) find the best point estimate of the population proportion p; (b) identify the value of the margin of error E; (c) construct the confidence interval; (d) write a statement that correctly interprets the confidence interval.

In a study of the accuracy of fast food drive-through orders, McDonald’s had 33 orders that were not accurate among 362 orders observed (based on data from QSR magazine).

Construct a 95% confidence interval for the proportion of orders that are not accurate.

Cell Phone Radiation Here is a sample of measured radiation emissions (cW/kg) for cell phones (based on data from the Environmental Working Group): 38, 55, 86, 145. Here are ten bootstrap samples: {38, 145, 55, 86}, {86, 38, 145, 145}, {145, 86, 55, 55}, {55, 55, 55, 145}, {86, 86, 55, 55}, {38, 38, 86, 86}, {145, 38, 86, 55}, {55, 86, 86, 86}, {145, 86, 55, 86}, {38, 145, 86, 556}.

a. Using only the ten given bootstrap samples, construct an 80% confidence interval estimate of the population mean.

b. Using only the ten given bootstrap samples, construct an 80% confidence interval estimate of the population standard deviation.

Constructing and Interpreting Confidence Intervals. In Exercises 13–16, use the given sample data and confidence level. In each case, (a) find the best point estimate of the population proportion p; (b) identify the value of the margin of error E; (c) construct the confidence interval; (d) write a statement that correctly interprets the confidence interval.

Survey Return Rate In a study of cell phone use and brain hemispheric dominance, an Internet survey was e-mailed to 5000 subjects randomly selected from an online group involved with ears. 717 surveys were returned. Construct a 90% confidence interval for the proportion of returned surveys.

Replacement

Why does the bootstrap method require sampling with replacement? What would happen if we used the methods of this section but sampled without replacement?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free