Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Finding Critical Values. In Exercises 5–8, find the critical value \({{\rm{z}}_{{{\rm{\alpha }} \mathord{\left/

{\vphantom {{\rm{\alpha }} {\rm{2}}}} \right.

\kern-\nulldelimiterspace} {\rm{2}}}}}\)that corresponds to the given confidence level.

99.5%

Short Answer

Expert verified

The critical value \({z_{\frac{\alpha }{2}}}\)for 99.5% level of confidence is 2.81.

Step by step solution

01

Given information

The level of significance is 99.5%.

02

Describe the concept of critical value

A critical value is a point on the test distribution that is compared to the test statistics to determine whether to reject the null hypothesis. It is denoted by \({z_{\frac{\alpha }{2}}}\)which is equal to z score within the area of \(\frac{\alpha }{2}\)in the right tail of the standard normal distribution for\(\alpha \) level of significance.

03

Find the critical value

When finding a critical value \({z_{\frac{\alpha }{2}}}\)for a particular value of \(\alpha \), note that \(\frac{\alpha }{2}\) is the cumulative area to the right of\({z_{\frac{\alpha }{2}}}\)which implies that the cumulative area to the left of \({z_{\frac{\alpha }{2}}}\) must be\(1 - \frac{\alpha }{2}\).

Here, for 99.5% confidence level,

\(\begin{aligned}{c}\alpha = 0.005\\1 - \frac{\alpha }{2} = 0.9975\end{aligned}\)

To find the z score corresponding the area 0.9975,

In the standard normal table for positive z score, find the value 0.9975, corresponding row value is 2.8, and column values is 0.01, which corresponds to the z-score of 2.81.

Therefore, the critical value for 99.5% level of significance is 2.81.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Constructing and Interpreting Confidence Intervals. In Exercises 13–16, use the given sample data and confidence level. In each case, (a) find the best point estimate of the population proportion p; (b) identify the value of the margin of error E; (c) construct the confidence interval; (d) write a statement that correctly interprets the confidence interval.

Eliquis The drug Eliquis (apixaban) is used to help prevent blood clots in certain patients. In clinical trials, among 5924 patients treated with Eliquis, 153 developed the adverse reaction of nausea (based on data from Bristol-Myers Squibb Co.). Construct a 99% confidence interval for the proportion of adverse reactions.

Confidence Interval with Known σ. In Exercises 37 and 38, find the confidence interval using the known value of σ.

Birth Weights of Boys Construct the confidence interval for Exercise 10 “Birth Weights of Boys,” assuming that σis known to be 6.6 hg.

Expressing Confidence Intervals Example 2 showed how the statistics ofn= 22 ands= 14.3 result in this 95% confidence interval estimate of σ: 11.0 < σ < 20.4. That confidence interval can also be expressed as (11.0, 20.4), but it cannot be expressed as 15.7± 4.7. Given that 15.7±4.7 results in values of 11.0 and 20.4, why is it wrong to express the confidence interval as 15.7±4.7?

Critical Thinking. In Exercises 17–28, use the data and confidence level to construct a confidence interval estimate of p, then address the given question. Smoking Stopped In a program designed to help patients stop smoking, 198 patients were given sustained care, and 82.8% of them were no longer smoking after one month. Among 199 patients given standard care, 62.8% were no longer smoking after one month (based on data from “Sustained Care Intervention and Post discharge Smoking Cessation Among Hospitalized Adults,” by Rigottiet al., Journal of the American Medical Association, Vol. 312, No. 7). Construct the two 95% confidence interval estimates of the percentages of success. Compare the results. What do you conclude?

Constructing and Interpreting Confidence Intervals. In Exercises 13–16, use the given sample data and confidence level. In each case, (a) find the best point estimate of the population proportion p; (b) identify the value of the margin of error E; (c) construct the confidence interval; (d) write a statement that correctly interprets the confidence interval.

Medical Malpractice In a study of 1228 randomly selected medical malpractice lawsuits, it was found that 856 of them were dropped or dismissed (based on data from the Physicians Insurers Association of America). Construct a 95% confidence interval for the proportion of medical malpractice lawsuits that are dropped or dismissed.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free