Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 1–3, refer to the accompanying screen display that results from the Verizon airport data speeds (Mbps) from Data Set 32 “Airport Data Speeds” in Appendix B. The confidence level of 95% was used.

Interpreting a Confidence Interval The results in the screen display are based on a 95%confidence level. Write a statement that correctly interprets the confidence interval.

Short Answer

Expert verified

There is 95% confidence that the true population mean value of the Verizon airport data speeds will lie between the values 13.046 Mbps and 22.15 Mbps.

Step by step solution

01

Given information

The 95% confidence interval estimate of the mean Verizon airport data speed is equal to (13.046 Mbps, 22.15 Mbps).

02

Step 2:Interpretation of the confidence interval

The correct interpretation of the given confidence interval is written below:

There is 95% confidence that the true population mean value of the Verizon airport data speeds will lie between the values 13.046 Mbps and 22.15 Mbps.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Constructing and Interpreting Confidence Intervals. In Exercises 13–16, use the given sample data and confidence level. In each case, (a) find the best point estimate of the population proportion p; (b) identify the value of the margin of error E; (c) construct the confidence interval; (d) write a statement that correctly interprets the confidence interval.

In a study of the accuracy of fast food drive-through orders, McDonald’s had 33 orders that were not accurate among 362 orders observed (based on data from QSR magazine).

Construct a 95% confidence interval for the proportion of orders that are not accurate.

Caffeine in Soft Drinks Listed below are measured amounts of caffeine (mg per 12oz of drink) obtained in one can from each of 20 brands (7UP, A&W root Beer, Cherry Coke, …TaB). Use a confidence interval 99%. Does the confidence interval give us good information about the population of all cans of the same 20 brands that are consumed? Does the sample appear to be from a normally distributed population? If not, how are the results affected?

0 0 34 34 34 45 41 51 55 36 47 41 0 0 53 54 38 0 41 47

Atkins Weight Loss Program In a test of weight loss programs, 40 adults used the Atkins weight loss program. After 12 months, their mean weight loss was found to be 2.1 lb, with a standard deviation of 4.8 lb. Construct a 90% confidence interval estimate of the mean weight loss for all such subjects. Does the Atkins program appear to be effective? Does it appear to be practical?

Critical Thinking. In Exercises 17–28, use the data and confidence level to construct a confidence interval estimate of p, then address the given question. Smoking Stopped In a program designed to help patients stop smoking, 198 patients were given sustained care, and 82.8% of them were no longer smoking after one month. Among 199 patients given standard care, 62.8% were no longer smoking after one month (based on data from “Sustained Care Intervention and Post discharge Smoking Cessation Among Hospitalized Adults,” by Rigottiet al., Journal of the American Medical Association, Vol. 312, No. 7). Construct the two 95% confidence interval estimates of the percentages of success. Compare the results. What do you conclude?

Finding Critical Values In constructing confidence intervals for σor σ2, Table A-4 can be used to find the critical values χL2and χR2only for select values of n up to 101, so the number of degrees of freedom is 100 or smaller. For larger numbers of degrees of freedom, we can approximate χL2andχR2 by using,

χ2=12±zα2+2k-12

where k is the number of degrees of freedom and zα2is the critical z score described in Section 7-1. Use this approximation to find the critical values χL2and χR2for Exercise 8 “Heights of Men,” where the sample size is 153 and the confidence level is 99%. How do the results compare to the actual critical values of χL2= 110.846 and χR2= 200.657?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free