Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Finding Critical Values In constructing confidence intervals for σor σ2, Table A-4 can be used to find the critical values χL2and χR2only for select values of n up to 101, so the number of degrees of freedom is 100 or smaller. For larger numbers of degrees of freedom, we can approximate χL2andχR2 by using,

χ2=12±zα2+2k-12

where k is the number of degrees of freedom and zα2is the critical z score described in Section 7-1. Use this approximation to find the critical values χL2and χR2for Exercise 8 “Heights of Men,” where the sample size is 153 and the confidence level is 99%. How do the results compare to the actual critical values of χL2= 110.846 and χR2= 200.657?

Short Answer

Expert verified

The calculated values are as follows.

χL2=109.980χR2=199.655

Both values are quite close to the actual critical values.

Step by step solution

01

Given information

The sample size is 153(n).

The confidence level is 99%.

The actual critical values are χL2=110.84andχR2=200.657

02

Calculate the critical z-score 

The z-score is obtained from the standard normal table.

The significance level is 0.01, corresponding to a 99% level of confidence.

The critical value is expressed as follows.

PZ>zα2=α2PZ>z0.012=0.012PZ<z0.005=0.995

By using technology, the critical value is computed as z0.012=2.575829303.

03

Compute the degree of freedom

The degree of freedom is computed as follows.

df=n-1=153-1=152

04

Compute the critical values 

Use the given formula for calculation.

χ2=12[±zα2+2k-1]

Substitute the value in the formula as shown below.

χL2=12-2.575829303+2152-12=109.9803χR2=122.575829303+2152-12=199.6546

Therefore, the values are 109.980 and 199.655, respectively, which are close to the actual critical values χL2=110.84and χR2=200.657.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Confidence Intervals. In Exercises 9–24, construct the confidence interval estimate of the mean. In Exercises 2-19,Mercury in SushiAn FDA guideline is that themercury in fish should be below 1 part per million (ppm). Listed below are the amounts of mercury (ppm) found in tuna sushi sampled at different stores in New York City. The study was sponsored by the New York Times, and the stores (in order) are D’Agostino, Eli’s Manhattan, Fairway, Food Emporium, Gourmet Garage, Grace’s Marketplace, and Whole Foods. Construct a 98% confidence interval estimate of the mean amount of mercury in the population. Does it appear that there is too much mercury in tuna sushi?

0.56 0.75 0.10 0.95 1.25 0.54 0.88

Using Correct Distribution. In Exercises 5–8, assume that we want to construct a confidence interval. Do one of the following, as appropriate: (a) Find the critical value tα2,(b) find the critical value zα2,or (c) state that neither the normal distribution nor the t distribution applies.

Denver Bronco Salaries confidence level is 90%, σis not known, and the histogram of 61 player salaries (thousands of dollars) is as shown.

In Exercises 9–16, assume that each sample is a simple random sample obtained from a population with a normal distribution.

Speed Dating In a study of speed dating conducted at Columbia University, male subjects were asked to rate the attractiveness of their female dates, and a sample of the results is listed below (1 = not attractive; 10 = extremely attractive). Construct a 95% confidence interval estimate of the standard deviation of the population from which the sample was obtained.

7 8 2 10 6 5 7 8 8 9 5 9

In Exercises 5–8, use the given information to find the number of degrees of freedom, the critical values χL2andχR2, and the confidence interval estimate of σ. The samples are from Appendix B and it is reasonable to assume that a simple random sample has been selected from a population with a normal distribution.

Weights of Pennies 95% confidence;n= 37,s= 0.01648 g.

Constructing and Interpreting Confidence Intervals. In Exercises 13–16, use the given sample data and confidence level. In each case, (a) find the best point estimate of the population proportion p; (b) identify the value of the margin of error E; (c) construct the confidence interval; (d) write a statement that correctly interprets the confidence interval.

Medical Malpractice In a study of 1228 randomly selected medical malpractice lawsuits, it was found that 856 of them were dropped or dismissed (based on data from the Physicians Insurers Association of America). Construct a 95% confidence interval for the proportion of medical malpractice lawsuits that are dropped or dismissed.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free