Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Critical Thinking. In Exercises 17–28, use the data and confidence level to construct a confidence interval estimate of p, then address the given question.Cell Phones and Cancer A study of 420,095 Danish cell phone users found that 0.0321% of them developed cancer of the brain or nervous system. Prior to this study of cell phone use, the rate of such cancer was found to be 0.0340% for those not using cell phones. The data are from the Journal of the National Cancer Institute.

a. Use the sample data to construct a 90% confidence interval estimate of the percentage of cell phone users who develop cancer of the brain or nervous system.

b. Do cell phone users appear to have a rate of cancer of the brain or nervous system that is different from the rate of such cancer among those not using cell phones? Why or why not?

Short Answer

Expert verified

a.The 90% confidence interval is equal to (0.0276%,0.0366%).

b. No, cell phone users do not appear to have a rate of cancer of the brain or nervous system that is different from the rate of such cancer among those not using cell phones.

Step by step solution

01

Given Information

In a sample of 420095 Danish cell phone users, 0.0321% of them developed cancer of the brain or nervous system. The rate of cancer was found to be 0.0340% for those not using cell phones.

02

Calculation of the sample proportion

The sample proportion of cell phone users who developed cancer is computed below:

p^=0.0321%=0.0321100=0.000321

The sample proportion of cell phone users who did not develop cancer is computed below:

q^=1-p^=1-0.000321=0.999679

03

Calculation of the margin of error

a.

The given level of significance is 0.10

Therefore, the value of zα2from the standard normal table is equal to 1.645.

The margin of error is computed as shown:

E=zα2×p^q^n=1.645×0.000321×0.999679420095=0.0000455

Therefore, the margin of error is 0.0000455.

04

Calculation of the confidence interval

a.

The 90% confidence interval is computed as follows:

p^-E<p<p^+E0.000321-0.0000455<p<0.000321+0.00004550.000276<p<0.0003670.0276%<p<0.0367%

Thus, the 90% confidence interval is equal to (0.0276%,0.0367%).

05

Step 5:Conclusion 

b.

Since confidence interval includes the value of 0.034%, there does not appear to be any difference betweenthe rate of cancer of the brain or nervous system that develops in cell phone users as compared to the rate of such cancer among those not using cell phones.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Using Correct Distribution. In Exercises 5–8, assume that we want to construct a confidence interval. Do one of the following, as appropriate: (a) Find the critical value tα2 ,(b) find the critical value zα2,or (c) state that neither the normal distribution nor the t distribution applies.

Birth Weights Here are summary statistics for randomly selected weights of newborn girls:n=205,x¯=30.4hg,s=7.1hg (based on Data Set 4 “Births” in Appendix B). The confidence level is 95%.

Years in college Listed below are the numbers of years it took for a random sample of college students to earn bachelor’s degrees (based on the data from the National Center for Education Statistics). Construct a 95% confidence interval estimate of the mean time for all college students to earn bachelor’s degrees. Does it appear that college students typically earn bachelor’s degrees in four years? Is there anything about the data that would suggest that the confidence interval might not be good result?

4 4 4 4 4 4 4.5 4.5 4.5 4.5 4.5 4.5

6 6 8 9 9 13 13 15

In Exercises 1–3, refer to the accompanying screen display that results from the Verizon airport data speeds (Mbps) from Data Set 32 “Airport Data Speeds” in Appendix B. The confidence level of 95% was used

Airport Data Speeds Refer to the accompanying screen display.

a. Express the confidence interval in the format that uses the “less than” symbol. Given that the original listed data use one decimal place, round the confidence interval limits accordingly.

b. Identify the best point estimate of and the margin of error.

c. In constructing the confidence interval estimate of , why is it not necessary to confirm that the sample data appear to be from a population with a normal distribution?

Determining Sample Size. In Exercises 31–38, use the given data to find the minimum sample size required to estimate a population proportion or percentage.

Bachelor’s Degree in Four Years

In a study of government financial aid for college students, it becomes necessary to estimate the percentage of full-time college students who earn a bachelor’s degree in four years or less. Find the sample size needed to estimate that percentage. Use a 0.05 margin of error, and use a confidence level of 95%.

a. Assume that nothing is known about the percentage to be estimated.

b. Assume that prior studies have shown that about 40% of full-time students earn bachelor’s degrees in four years or less.

c. Does the added knowledge in part (b) have much of an effect on the sample size?

Cell Phone Radiation Here is a sample of measured radiation emissions (cW/kg) for cell phones (based on data from the Environmental Working Group): 38, 55, 86, 145. Here are ten bootstrap samples: {38, 145, 55, 86}, {86, 38, 145, 145}, {145, 86, 55, 55}, {55, 55, 55, 145}, {86, 86, 55, 55}, {38, 38, 86, 86}, {145, 38, 86, 55}, {55, 86, 86, 86}, {145, 86, 55, 86}, {38, 145, 86, 556}.

a. Using only the ten given bootstrap samples, construct an 80% confidence interval estimate of the population mean.

b. Using only the ten given bootstrap samples, construct an 80% confidence interval estimate of the population standard deviation.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free