Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Constructing and Interpreting Confidence Intervals. In Exercises 13–16, use the given sample data and confidence level. In each case, (a) find the best point estimate of the population proportion p; (b) identify the value of the margin of error E; (c) construct the confidence interval; (d) write a statement that correctly interprets the confidence interval.

Survey Return Rate In a study of cell phone use and brain hemispheric dominance, an Internet survey was e-mailed to 5000 subjects randomly selected from an online group involved with ears. 717 surveys were returned. Construct a 90% confidence interval for the proportion of returned surveys.

Short Answer

Expert verified

(a)Thebest point estimate of the proportion of surveys that were returnedis equal to 0.143.

(b)The margin of error is equal to 0.0082.

(c)The 90% confidence interval estimate of the population proportion of surveys that were returned is equal to (0.135, 0.152).

(d) There is 90% confidence that the true proportion of surveys that were returned will lie between the values 0.135 and 0.152.

Step by step solution

01

Given information

In a sample of emails of surveys sent to 5000 subjects, 717 surveys were returned.

02

Compute the sample proportion

(a)

The best point estimate of the proportion of surveys that were returned is computed below:

p^=7175000=0.143

Thus, the sample proportion of surveys that were returned and equal to 0.143 is the best point estimate of the proportion of surveys that were returned.

03

Compute the margin of error

(b)

The confidence level is equal to 90%. Thus, the corresponding level of significance is equal to 0.10.

From the standard normal distribution table, the right-tailed value of zα2for is equal to 1.645.

The margin of error is calculated below:

E=1.645×0.143×0.8575000=0.0082

Thus, the margin of error is equal to 0.0082.

04

Compute the confidence interval

(c)

The formula for computing the confidence interval estimate of the population proportion is written below:

CI=p^-E,p^+E

The 90% confidence interval becomes equal to:

CI=0.143-0.0082,0.143+0.0082=0.135,0.152

Therefore, the 90% confidence interval estimate of the population proportion of surveys that were returned is equal to (0.135, 0.152).

05

Interpretation of the confidence interval

(d)

There is 90% confidence that the true proportion of surveys that were returned will lie between the values 0.135 and 0.152.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Celebrities and the Law Here is a 95% confidence interval estimate of the proportion of adults who say that the law goes easy on celebrities: 0.692 <p< 0.748 (based on data from a Rasmussen Reports survey). What is the best point estimate of the proportion of adults in the population who say that the law goes easy on celebrities?

Question:In Exercises 5–8, use the given information to find the number of degrees of freedom, the critical values X2 L and X2R, and the confidence interval estimate of σ. The samples are from Appendix B and it is reasonable to assume that a simple random sample has been selected from a population with a normal distribution.

Heights of Men 99% confidence;n= 153,s= 7.10 cm.

In Exercises 9–16, assume that each sample is a simple

random sample obtained from a population with a normal distribution.

Comparing Waiting Lines

a. The values listed below are waiting times (in minutes) of customers at the Jefferson Valley Bank, where customers enter a single waiting line that feeds three teller windows. Construct a95% confidence interval for the population standard deviation .

6.5 6.6 6.7 6.8 7.1 7.3 7.4 7.7 7.7 7.7

b. The values listed below are waiting times (in minutes) of customers at the Bank of Providence, where customers may enter any one of three different lines that have formed at three teller windows. Construct a 95% confidence interval for the population standard deviation .

4.2 5.4 5.8 6.2 6.7 7.7 7.7 8.5 9.3 10.0

c. Interpret the results found in parts (a) and (b). Do the confidence intervals suggest a difference in the variation among waiting times? Which arrangement seems better: the single-line system or the multiple-line system?

Chickenpox : You plan to conduct a survey to estimate the percentage of adults who have had chickenpox. Find the number of people who must be surveyed if you want to be 90% confident that the sample percentage is within two percentage points of the true percentage for the population of all adults.

a. Assume that nothing is known about the prevalence of chickenpox.

b. Assume that about 95% of adults have had chickenpox.

c. Does the added knowledge in part (b) have much of an effect on the sample size?

In Exercises 5–8, use the relatively small number of given bootstrap samples to construct the confidence interval. Freshman 15: Here is a sample of amounts of weight change (kg) of college students in their freshman year (from Data Set 6 “Freshman 15” in Appendix B): 11, 3, 0, -2, where -2 represents a loss of 2 kg and positive values represent weight gained. Here are ten bootstrap samples: {11, 11, 11, 0}, {11, -2, 0, 11}, {11, -2, 3, 0}, {3, -2, 0, 11}, {0, 0, 0, 3}, {3, -2, 3, -2}, {11, 3, -2, 0}, { -2, 3, -2, 3}, { -2, 0, -2, 3}, {3, 11, 11, 11}. a. Using only the ten given bootstrap samples, construct an 80% confidence interval estimate of the mean weight change for the population. b. Using only the ten given bootstrap samples, construct an 80% confidence interval estimate of the standard deviation of the weight changes for the population.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free