Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Mean Body Temperature Data Set 3 “Body Temperatures” in Appendix B includes a sample of 106 body temperatures having a mean of 98.20°F and a standard deviation of 0.62°F. Construct a 95% confidence interval estimate of the mean body temperature for the entire population. What does the result suggest about the common belief that 98.6°F is the mean body temperature?

Short Answer

Expert verified

The 95% confidence interval of the mean body temperature for the entire population is 98.08°F<μ<98.32°F.

The result suggests that the common belief that “the mean body temperature is 98.6°F” is not true.

Step by step solution

01

Given information

Mean of 106 samples of body temperatures is 98.20°F x¯and the standard deviation is 0.62°F (s).

The level of confidence is 95%.

02

Check the requirements

The sample size of mean body temperatures is 106 which is greater than 30.Therefore, the distribution can be approximated as normal distribution.

Assume that the sample is randomly selected and the population standard deviation is unknown.

Thus, t-distribution would be used to find the confidence interval.

03

State the formula for confidence interval

Confidence interval for mean is expressed as x¯-E<μ<x¯+E.

Here, x¯is the sample mean and E is the margin of error.

E=tα2×sn

Where, tα2is the critical value with level of significance for normal distribution.

Here, x¯represents the sample mean of the Mean Body Temperature data and μ represents the population mean of the Mean Body Temperature data.

04

Construct the confidence interval.

The 95% confidence interval for mean body temperature is computed as,

x¯-E<μ<x¯+E98.20-0.1194<μ<98.20+0.119498.08<μ<98.32

Therefore, 95% confidence interval is 98.08°F,98.32°F.

05

Interpret the result

The 95% confidence interval of the mean body temperature for the entire population is 98.080F<μ<98.320F.

The confidence interval does not contain in 95% confidence interval.

Hence, the result suggests that the common belief that “the mean body temperature is 98.6°F” is not true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Sample Size. In Exercises 29–36, find the sample size required to estimate the population mean.

Mean Body Temperature Data Set 3 “Body Temperatures” in Appendix B includes 106 body temperatures of adults for Day 2 at 12 am, and they vary from a low of 96.5°F to a high of 99.6°F. Find the minimum sample size required to estimate the mean body temperature of all adults. Assume that we want 98% confidence that the sample mean is within 0.1°F of the population mean.

a. Find the sample size using the range rule of thumb to estimate s.

b. Assume that σ=0.62F, based on the value of s=0.6Ffor the sample of 106 body temperatures.

c. Compare the results from parts (a) and (b). Which result is likely to be better?

Constructing and Interpreting Confidence Intervals. In Exercises 13–16, use the given sample data and confidence level. In each case, (a) find the best point estimate of the population proportion p; (b) identify the value of the margin of error E; (c) construct the confidence interval; (d) write a statement that correctly interprets the confidence interval.

Medical Malpractice In a study of 1228 randomly selected medical malpractice lawsuits, it was found that 856 of them were dropped or dismissed (based on data from the Physicians Insurers Association of America). Construct a 95% confidence interval for the proportion of medical malpractice lawsuits that are dropped or dismissed.

In Exercises 5–8, use the relatively small number of given bootstrap samples to construct the confidence interval. Freshman 15: Here is a sample of amounts of weight change (kg) of college students in their freshman year (from Data Set 6 “Freshman 15” in Appendix B): 11, 3, 0, -2, where -2 represents a loss of 2 kg and positive values represent weight gained. Here are ten bootstrap samples: {11, 11, 11, 0}, {11, -2, 0, 11}, {11, -2, 3, 0}, {3, -2, 0, 11}, {0, 0, 0, 3}, {3, -2, 3, -2}, {11, 3, -2, 0}, { -2, 3, -2, 3}, { -2, 0, -2, 3}, {3, 11, 11, 11}. a. Using only the ten given bootstrap samples, construct an 80% confidence interval estimate of the mean weight change for the population. b. Using only the ten given bootstrap samples, construct an 80% confidence interval estimate of the standard deviation of the weight changes for the population.

Finding Critical Values. In Exercises 5–8, find the critical value that corresponds to the given confidence level.

99.5%

Critical Thinking. In Exercises 17–28, use the data and confidence level to construct a confidence interval estimate of p, then address the given question. Smoking Stopped In a program designed to help patients stop smoking, 198 patients were given sustained care, and 82.8% of them were no longer smoking after one month. Among 199 patients given standard care, 62.8% were no longer smoking after one month (based on data from “Sustained Care Intervention and Post discharge Smoking Cessation Among Hospitalized Adults,” by Rigottiet al., Journal of the American Medical Association, Vol. 312, No. 7). Construct the two 95% confidence interval estimates of the percentages of success. Compare the results. What do you conclude?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free