Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Critical Thinking: What does the survey tell us? Surveys have become an integral part of our lives. Because it is so important that every citizen has the ability to interpret survey results, surveys are the focus of this project. The Pew Research Center recently conducted a survey of 1007 U.S. adults and found that 85% of those surveyed know what Twitter is.

Analyzing the Data

Use the survey results to construct a 95% confidence interval estimate of the percentage of all adults who know what Twitter is.

Short Answer

Expert verified

The 95% confidence interval estimate of the percentage of all adults, who know what Twitter is, is equal to (82.8%, 87.2%).

Step by step solution

01

Given information

A survey consisted of 1007 U.S. adults. 85% of those who were surveyed know what Twitter is.

02

Confidence interval of population proportion

The formula of the confidence interval for a population proportion is given as follows:

CI=p^-E,p^+E=p^-zα2p^q^n,p^+zα2p^q^n

Where, p^ be the sample proportion, E is the margin of error, n is the sample size, zα2is the two-tailed critical value obtained from standard normal table.

Also,

q^=1-p^

03

Compute the confidence interval 

The proportion of adults who know what Twitter is is shown below:

p^=85%=85100=0.85

The sample size (n) is equal to 1007.

The confidence level is given to be equal to 95%. This implies that the level of significance is equal to 0.05.

The value of zα2becomes equal to 1.96.

The following computation is made to construct the confidence interval estimate of the proportion of all adults who know what Twitter is:

CI=p^-E,p^+E=p^-zα2p^q^n,p^+zα2p^q^n=0.85-1.960.851-0.851007,0.85+1.960.851-0.851007=0.828,0.872

In terms of percentage, the confidence interval becomes as follows:

CI=0.828,0.872=82.8%,87.2%

Thus, the 95% confidence interval estimate of the percentage of all adults, who know what Twitter is, is equal to (82.8%, 87.2%).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1–3, refer to the accompanying screen display that results from the Verizon airport data speeds (Mbps) from Data Set 32 “Airport Data Speeds” in Appendix B. The confidence level of 95% was used

Airport Data Speeds Refer to the accompanying screen display.

a. Express the confidence interval in the format that uses the “less than” symbol. Given that the original listed data use one decimal place, round the confidence interval limits accordingly.

b. Identify the best point estimate of and the margin of error.

c. In constructing the confidence interval estimate of , why is it not necessary to confirm that the sample data appear to be from a population with a normal distribution?

Critical Thinking. In Exercises 17–28, use the data and confidence level to construct a confidence interval estimate of p, then address the given question.

Lipitor In clinical trials of the drug Lipitor (atorvastatin), 270 subjects were given a placebo, and 7 of them had allergic reactions. Among 863 subjects treated with 10 mg of the drug, 8 experienced allergic reactions. Construct the two 95% confidence interval estimates of the percentages of allergic reactions. Compare the results. What do you conclude?

In Exercises 5–8, use the given information to find the number of degrees of freedom, the critical values X2 L and X2R, and the confidence interval estimate of σ. The samples are from Appendix B and it is reasonable to assume that a simple random sample has been selected from a population with a normal distribution.

Platelet Counts of Women 99% confidence;n= 147,s= 65.4.

Use the given data to find the minimum sample size required to estimate a population proportion or percentage. Lefties: Find the sample size needed to estimate the percentage of California residents who are left-handed. Use a margin of error of three percentage points, and use a confidence level of 99%.

a. Assume that p^andq^are unknown.

b. Assume that based on prior studies, about 10% of Californians are left-handed.

c. How do the results from parts (a) and (b) change if the entire United States is used instead of California?

In Exercises 5–8, use the relatively small number of given bootstrap samples to construct the confidence interval.Seating Choice In a 3M Privacy Filters poll, respondents were asked to identify their favourite seat when they fly, and the results include these responses: window, window, other, other. Letting “window” = 1 and letting “other” = 0, here are ten bootstrap samples for those responses: {0, 0, 0, 0}, {0, 1, 0, 0}, {0, 1, 0, 1}, {0, 0, 1, 0}, {1, 1, 1, 0}, {0, 1, 1, 0}, {1, 0, 0, 1}, {0, 1, 1, 1}, {1, 0, 1, 0}, {1, 0, 0, 1}. Using only the ten given bootstrap samples, construct an 80% confidence interval estimate of the proportion of respondents who indicated their favourite seat is “window.”

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free