Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Composite Sampling. Exercises 33 and 34 involve the method of composite sampling, whereby a medical testing laboratory saves time and money by combining blood samples for tests so that only one test is conducted for several people. A combined sample tests positive if at least one person has the disease. If a combined sample tests positive, then individual blood tests are used to identify the individual with the disease or disorder.

HIV It is estimated that worldwide, 1% of those aged 15–49 are infected with the human immunodeficiency virus (HIV) (based on data from the National Institutes of Health). In tests for HIV, blood samples from 36 people are combined. What is the probability that the combined sample tests positive for HIV? Is it unlikely for such a combined sample to test positive?

Short Answer

Expert verified

The probability that the combined sample tests positive for HIV areequal to 0.304.

It is not unlikely for such a combined sample to test positive as the value is not low.

Step by step solution

01

Given information

It is given that a combined blood sample of 36 people will test positive for HIV if at least one of the 36 samples tests positive.

One percent of the people in the world between the ages 15-49 years are positive for HIV.

02

Required probability

Let Xdenote the number of samples that test positive in the combined sample.

Success is defined as getting a positive sample in the combined sample.

The probability of success is computed below:

p=1%=1100=0.01

The probability of failure is computed below:

q=1-p=1-0.01=0.99

The number of trials (n) is equal to 36.

The binomial probability formula is as follows:

PX=x=nCxpxqn-x

By using the binomial probability formula, the probability of at least one positive sample is computed below:

PX1=1-PX<1=1-PX=0=1-36C00.0100.9936-0=1-0.696413=0.304

Thus, the probability that the combined sample tests positive for HIV is equal to 0.304.

Since the value is not low, it is not unlikely for such a combined sample to test positive.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 15–20, assume that random guesses are made for eight multiple choice questions on an SAT test, so that there are n = eight trials, each with probability of success (correct) given by p = 0.20. Find the indicated probability for the number of correct answers.

Find the probability that the number x of correct answers is no more than 2.

In Exercises 15–20, assume that random guesses are made for eight multiple choice questions on an SAT test, so that there are n = eight trials, each with probability of success (correct) given by p = 0.20. Find the indicated probability for the number of correct answers.

Find the probability that the number x of correct answers is fewer than 3.

In Exercises 21–25, refer to the accompanying table, which describes the numbers of adults in groups of five who reported sleepwalking (based on data from “Prevalence and Comorbidity of Nocturnal Wandering In the U.S. Adult General Population,” by Ohayon et al., Neurology, Vol. 78, No. 20).

Find the mean and standard deviation for the numbers of sleepwalkers in groups of five.

x

P(x)

0

0.172

1

0.363

2

0.306

3

0.129

4

0.027

5

0.002

Identifying Binomial Distributions. In Exercises 5–12, determine whether the given procedure results in a binomial distribution (or a distribution that can be treated as binomial). For those that are not binomial, identify at least one requirement that is not satisfied.

Investigating Dates In a survey sponsored by TGI Friday’s, 1000 different adult respondents were randomly selected without replacement, and each was asked if they investigate dates on social media before meeting them. Responses consist of “yes” or “no.”

Identifying Binomial Distributions. In Exercises 5–12, determine whether the given procedure results in a binomial distribution (or a distribution that can be treated as binomial). For those that are not binomial, identify at least one requirement that is not satisfied.

Clinical Trial of YSORT The YSORT method of gender selection, developed by the Genetics & IVF Institute, was designed to increase the likelihood that a baby will be a boy. When 291 couples use the YSORT method and give birth to 291 babies, the genders of the babies are recorded.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free