Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 21–24, assume that when adults with smartphones are randomly selected, 54% use them in meetings or classes (based on data from an LG Smartphone survey).

If 12 adult smartphone users are randomly selected, find the probability that fewer than 3 of them use their smartphones in meetings or classes.

Short Answer

Expert verified

The probability of selecting less than three users who use their smartphones in meetings or classes is equal to 0.0095.

Step by step solution

01

Given information

A group of 12 adult smartphone users was selected. The probability of selecting a user who uses his/her smartphone in meetings or classes is equal to 0.54.

02

Required probability

Let X denote the users who use their smartphones in meetings or classes.

The number of trials (n) is given to be equal to 12.

The probability of success is calculated below:

p=54%=54100=0.54

The probability of failure is calculated below:

q=1-p=1-0.54=0.46

The number of successes required in 12 trials should be less than three.

The binomial probability formula is as follows:

PX=x=nCxpxqn-x

By using the binomial probability formula, the probability of getting less than three users who use their smartphones in meetings or classes is computed below:

PX<3=PX=0+PX=1+PX=2=12C00.5400.4612-0+12C10.5410.4612-1+12C20.5420.4612-2=0.0000897+0.0012644+0.0081641=0.0095

Therefore, the probability of getting fewer than three users who use their smartphones in meetings or classes is equal to 0.0095.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Identifying Binomial Distributions. In Exercises 5–12, determine whether the given procedure results in a binomial distribution (or a distribution that can be treated as binomial). For those that are not binomial, identify at least one requirement that is not satisfied.

LOL In a U.S. Cellular survey of 500 smartphone users, subjects are asked if they find abbreviations (such as LOL or BFF) annoying, and each response was recorded as “yes” or “other.”

a.The probability of 7 hurricanes in a year is equal to 0.140.

b. Thus, the expected number of years to have 7 hurricanes in a 55-year period is equal to 7.7 years.

c. The expected number of years that have 7 hurricanes is approximately equal to the actual number of years that have 7 hurricanes in a 55-year period.Since the expected and the actual values are approximately equal, the Poisson distribution works well here.

In a USA Todaypoll, subjects were asked if passwords should be replaced with biometric security, such as fingerprints. The results from that poll have been used to create the accompanying table. Does this table describe a probability distribution? Why or why not?

Response

P(x)

Yes

0.53

No

0.17

Not Sure

0.3

In Exercises 6–10, use the following: Five American Airlines flights are randomly selected, and the table in the margin lists the probabilities for the number that arrive on time (based on data from the Department of Transportation). Assume that five flights are randomly selected.

Does the table describe a probability distribution?

x

P(x)

0

0+

1

0.006

2

0.051

3

0.205

4

0.409

5

0.328

In Exercises 21–25, refer to the accompanying table, which describes the numbers of adults in groups of five who reported sleepwalking (based on data from “Prevalence and Comorbidity of Nocturnal Wandering In the U.S. Adult General Population,” by Ohayon et al., Neurology, Vol. 78, No. 20).

Using Probabilities for Identifying Significant Events

a.Find the probability of getting exactly 1 sleepwalker among 5 adults.

b. Find the probability of getting 1 or fewer sleepwalkers among 5 adults.

c. Which probability is relevant for determining whether 1 is a significantly lownumber of sleepwalkers among 5 adults: the result from part (a) or part (b)?

d. Is 1 a significantly low number of sleepwalkers among 5 adults? Why or why not?

x

P(x)

0

0.172

1

0.363

2

0.306

3

0.129

4

0.027

5

0.002

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free