Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Notation In analyzing hits by V-1 buzz bombs in World War II, South London was partitioned into 576 regions, each with an area of 0.25 \(k{m^2}\) . A total of 535 bombs hit the combined area of 576 regions. Assume that we want to find the probability that a randomly selected region had exactly two hits. In applying Formula 5-9, identify the values of \(\mu \), x, and e. Also, briefly describe what each of those symbols represents.

Short Answer

Expert verified

\(\mu \)denotes the mean number of bomb hits per region. Its value is equal to 0.929.

x denotes the number of hits required to compute the desired probability. Its value is equal to 2.

e denotes the constant in the Poisson probability formula. Its value is approximately equal to 2.71828.

Step by step solution

01

Given information

It is given that a total of 535 bomb hits the area of South London with 576 regions.

02

Identify the values and the meaning of symbols\(\mu \), x, and e

The mean number of hits per region is denoted by\(\mu \).

The value of\(\mu \)is computed below:

\(\begin{array}{c}\mu = \frac{{{\rm{Number}}\;{\rm{of}}\;{\rm{bomb}}\;{\rm{hits}}}}{{{\rm{Number}}\;{\rm{of}}\;{\rm{regions}}}}\\ = \frac{{535}}{{576}}\\ = 0.929\end{array}\)

Thus,\(\mu = 0.929\).

The number of hits required to compute the probability is denoted by x.

Here, x=2.

e is the constant that is used in the Poisson probability formula. It is also called the Euler’s number.

The value of e is approximately equal to 2.71828.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Identifying Binomial Distributions. In Exercises 5–12, determine whether the given procedure results in a binomial distribution (or a distribution that can be treated as binomial). For those that are not binomial, identify at least one requirement that is not satisfied.

Surveying Senators Ten different senators from the 113th Congress are randomly selected without replacement, and the numbers of terms that they have served are recorded.

Ultimate Binomial Exercises! Exercises 37–40 involve finding binomial probabilities, finding parameters, and determining whether values are significantly high or low by using the range rule of thumb and probabilities.

Hybrids One of Mendel’s famous experiments with peas resulted in 580 offspring, and 152 of them were yellow peas. Mendel claimed that under the same conditions, 25% of offspring peas would be yellow. Assume that Mendel’s claim of 25% is true, and assume that a sample consists of 580 offspring peas. a. Use the range rule of thumb to identify the limits separating values that are significantly low and those that are significantly high. Based on the results, is the result of 152 yellow peas either significantly low or significantly high?

b. Find the probability of exactly 152 yellow peas.

c. Find the probability of 152 or more yellow peas.

d. Which probability is relevant for determining whether 152 peas is significantly high: the probability from part (b) or part (c)? Based on the relevant probability, is the result of 152 yellow peas significantly high?

e. What do the results suggest about Mendel’s claim of 25%?

Using the same SAT questions described in Exercise 2, is 20 a significantly high number of correct answers for someone making random guesses?

In Exercises 21–25, refer to the accompanying table, which describes the numbers of adults in groups of five who reported sleepwalking (based on data from “Prevalence and Comorbidity of Nocturnal Wandering In the U.S. Adult General Population,” by Ohayon et al., Neurology, Vol. 78, No. 20).

Using Probabilities for Identifying Significant Events

a.Find the probability of getting exactly 1 sleepwalker among 5 adults.

b. Find the probability of getting 1 or fewer sleepwalkers among 5 adults.

c. Which probability is relevant for determining whether 1 is a significantly lownumber of sleepwalkers among 5 adults: the result from part (a) or part (b)?

d. Is 1 a significantly low number of sleepwalkers among 5 adults? Why or why not?

x

P(x)

0

0.172

1

0.363

2

0.306

3

0.129

4

0.027

5

0.002

In Exercises 21–25, refer to the accompanyingtable, which describes the numbers of adults in groups of fivewho reported sleepwalking (based on data from “Prevalence andComorbidity of Nocturnal Wandering In the U.S. Adult GeneralPopulation,” by Ohayon et al., Neurology, Vol. 78, No. 20).

Use the range rule of thumb to determine whether 3 is a significantly high number of sleepwalkers in a group of 5 adults.

x

P(x)

0

0.172

1

0.363

2

0.306

3

0.129

4

0.027

5

0.002

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free